Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the family

09.08.2010
Modifying a familiar class of dye molecules with optically active carbon rings creates new possibilities for light-based medical therapies

A new family of molecules, termed ‘azuleneocyanines’, that can absorb large amounts of near-infrared light—a critical part of the electromagnetic spectrum—has been synthesized by Atsuya Muranaka, Mitsuhiro Yonehara and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako1. The work has the potential to advance medical imaging and photodynamic cancer treatments because near-infrared light can penetrate deep into human tissue with little loss of intensity.

The key to the team’s approach is a group of large, cyclic organic molecules known as porphyrins. The numerous carbon- and nitrogen-based double bonds found within these molecules make them extremely sensitive to light radiation and therefore intensely colored. Beginning in the early 20th century, chemists began to alter porphyrin structures to create the class of pigments called phthalocyanines (Fig. 1), which have emerged as important dyes owing to their stability under intense heat and light conditions.

Although many phthalocyanines can absorb near-infrared light with wavelengths between 700 and 800 nanometers, prospective medical applications require dye compounds with enhanced activity in the 700–1100 nanometer region—the so-called ‘optical window’. To meet this challenge, Muranaka and colleagues synthesized a new dye that incorporates azulene—an aromatic molecule containing fused five- and seven-membered hydrocarbon rings—into the phthalocyanine framework. Azulene’s unusual structure gives it unique electron-accepting characteristics that the researchers suspected would lead to an improved dye material.

In their synthesis, the researchers first added cyanide groups to the seven-membered ring of azulene, and then attached two butyl chains to its pentagonal component to improve the product’s solubility. Finally, they linked four modified azulene units together to form the cyclic azuleneocyanine complex—a troublesome process, according to Muranaka, because several hard-to-distinguish structural isomers were produced during the cyclization reaction.

The effort required to produce azuleneocyanine paid off when the researchers observed this compound could absorb intense amounts of light in the optical window region—behavior distinct from other phthalocyanines and the azulene precursor. Theoretical calculations revealed that the seven-membered ring of azulene lowered the energy barrier for electron absorption in the complex, leading to the unprecedented near-infrared activity.

While the high stability and strong absorption capabilities of azuleneocyanine promise to be a boon for near-infrared applications, the researchers also take great pride in the discovery and christening of this molecular family. “Chemists have great enthusiasm for naming molecules,” says Muranaka, “and it’s really exciting for us to name a new class of compounds that we created.”

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute

Journal information

1. Muranaka, A., Yonehara, M. & Uchiyama, M. Azuleneocyanine: A new family of phtalocyanines with intense near-IR absorption. Journal of the American Chemical Society 132, 7844–7845 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6354
http://www.researchsea.com

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>