Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the family

09.08.2010
Modifying a familiar class of dye molecules with optically active carbon rings creates new possibilities for light-based medical therapies

A new family of molecules, termed ‘azuleneocyanines’, that can absorb large amounts of near-infrared light—a critical part of the electromagnetic spectrum—has been synthesized by Atsuya Muranaka, Mitsuhiro Yonehara and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako1. The work has the potential to advance medical imaging and photodynamic cancer treatments because near-infrared light can penetrate deep into human tissue with little loss of intensity.

The key to the team’s approach is a group of large, cyclic organic molecules known as porphyrins. The numerous carbon- and nitrogen-based double bonds found within these molecules make them extremely sensitive to light radiation and therefore intensely colored. Beginning in the early 20th century, chemists began to alter porphyrin structures to create the class of pigments called phthalocyanines (Fig. 1), which have emerged as important dyes owing to their stability under intense heat and light conditions.

Although many phthalocyanines can absorb near-infrared light with wavelengths between 700 and 800 nanometers, prospective medical applications require dye compounds with enhanced activity in the 700–1100 nanometer region—the so-called ‘optical window’. To meet this challenge, Muranaka and colleagues synthesized a new dye that incorporates azulene—an aromatic molecule containing fused five- and seven-membered hydrocarbon rings—into the phthalocyanine framework. Azulene’s unusual structure gives it unique electron-accepting characteristics that the researchers suspected would lead to an improved dye material.

In their synthesis, the researchers first added cyanide groups to the seven-membered ring of azulene, and then attached two butyl chains to its pentagonal component to improve the product’s solubility. Finally, they linked four modified azulene units together to form the cyclic azuleneocyanine complex—a troublesome process, according to Muranaka, because several hard-to-distinguish structural isomers were produced during the cyclization reaction.

The effort required to produce azuleneocyanine paid off when the researchers observed this compound could absorb intense amounts of light in the optical window region—behavior distinct from other phthalocyanines and the azulene precursor. Theoretical calculations revealed that the seven-membered ring of azulene lowered the energy barrier for electron absorption in the complex, leading to the unprecedented near-infrared activity.

While the high stability and strong absorption capabilities of azuleneocyanine promise to be a boon for near-infrared applications, the researchers also take great pride in the discovery and christening of this molecular family. “Chemists have great enthusiasm for naming molecules,” says Muranaka, “and it’s really exciting for us to name a new class of compounds that we created.”

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute

Journal information

1. Muranaka, A., Yonehara, M. & Uchiyama, M. Azuleneocyanine: A new family of phtalocyanines with intense near-IR absorption. Journal of the American Chemical Society 132, 7844–7845 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6354
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>