Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the family

09.08.2010
Modifying a familiar class of dye molecules with optically active carbon rings creates new possibilities for light-based medical therapies

A new family of molecules, termed ‘azuleneocyanines’, that can absorb large amounts of near-infrared light—a critical part of the electromagnetic spectrum—has been synthesized by Atsuya Muranaka, Mitsuhiro Yonehara and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako1. The work has the potential to advance medical imaging and photodynamic cancer treatments because near-infrared light can penetrate deep into human tissue with little loss of intensity.

The key to the team’s approach is a group of large, cyclic organic molecules known as porphyrins. The numerous carbon- and nitrogen-based double bonds found within these molecules make them extremely sensitive to light radiation and therefore intensely colored. Beginning in the early 20th century, chemists began to alter porphyrin structures to create the class of pigments called phthalocyanines (Fig. 1), which have emerged as important dyes owing to their stability under intense heat and light conditions.

Although many phthalocyanines can absorb near-infrared light with wavelengths between 700 and 800 nanometers, prospective medical applications require dye compounds with enhanced activity in the 700–1100 nanometer region—the so-called ‘optical window’. To meet this challenge, Muranaka and colleagues synthesized a new dye that incorporates azulene—an aromatic molecule containing fused five- and seven-membered hydrocarbon rings—into the phthalocyanine framework. Azulene’s unusual structure gives it unique electron-accepting characteristics that the researchers suspected would lead to an improved dye material.

In their synthesis, the researchers first added cyanide groups to the seven-membered ring of azulene, and then attached two butyl chains to its pentagonal component to improve the product’s solubility. Finally, they linked four modified azulene units together to form the cyclic azuleneocyanine complex—a troublesome process, according to Muranaka, because several hard-to-distinguish structural isomers were produced during the cyclization reaction.

The effort required to produce azuleneocyanine paid off when the researchers observed this compound could absorb intense amounts of light in the optical window region—behavior distinct from other phthalocyanines and the azulene precursor. Theoretical calculations revealed that the seven-membered ring of azulene lowered the energy barrier for electron absorption in the complex, leading to the unprecedented near-infrared activity.

While the high stability and strong absorption capabilities of azuleneocyanine promise to be a boon for near-infrared applications, the researchers also take great pride in the discovery and christening of this molecular family. “Chemists have great enthusiasm for naming molecules,” says Muranaka, “and it’s really exciting for us to name a new class of compounds that we created.”

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute

Journal information

1. Muranaka, A., Yonehara, M. & Uchiyama, M. Azuleneocyanine: A new family of phtalocyanines with intense near-IR absorption. Journal of the American Chemical Society 132, 7844–7845 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6354
http://www.researchsea.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>