Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welcome to the family

09.08.2010
Modifying a familiar class of dye molecules with optically active carbon rings creates new possibilities for light-based medical therapies

A new family of molecules, termed ‘azuleneocyanines’, that can absorb large amounts of near-infrared light—a critical part of the electromagnetic spectrum—has been synthesized by Atsuya Muranaka, Mitsuhiro Yonehara and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako1. The work has the potential to advance medical imaging and photodynamic cancer treatments because near-infrared light can penetrate deep into human tissue with little loss of intensity.

The key to the team’s approach is a group of large, cyclic organic molecules known as porphyrins. The numerous carbon- and nitrogen-based double bonds found within these molecules make them extremely sensitive to light radiation and therefore intensely colored. Beginning in the early 20th century, chemists began to alter porphyrin structures to create the class of pigments called phthalocyanines (Fig. 1), which have emerged as important dyes owing to their stability under intense heat and light conditions.

Although many phthalocyanines can absorb near-infrared light with wavelengths between 700 and 800 nanometers, prospective medical applications require dye compounds with enhanced activity in the 700–1100 nanometer region—the so-called ‘optical window’. To meet this challenge, Muranaka and colleagues synthesized a new dye that incorporates azulene—an aromatic molecule containing fused five- and seven-membered hydrocarbon rings—into the phthalocyanine framework. Azulene’s unusual structure gives it unique electron-accepting characteristics that the researchers suspected would lead to an improved dye material.

In their synthesis, the researchers first added cyanide groups to the seven-membered ring of azulene, and then attached two butyl chains to its pentagonal component to improve the product’s solubility. Finally, they linked four modified azulene units together to form the cyclic azuleneocyanine complex—a troublesome process, according to Muranaka, because several hard-to-distinguish structural isomers were produced during the cyclization reaction.

The effort required to produce azuleneocyanine paid off when the researchers observed this compound could absorb intense amounts of light in the optical window region—behavior distinct from other phthalocyanines and the azulene precursor. Theoretical calculations revealed that the seven-membered ring of azulene lowered the energy barrier for electron absorption in the complex, leading to the unprecedented near-infrared activity.

While the high stability and strong absorption capabilities of azuleneocyanine promise to be a boon for near-infrared applications, the researchers also take great pride in the discovery and christening of this molecular family. “Chemists have great enthusiasm for naming molecules,” says Muranaka, “and it’s really exciting for us to name a new class of compounds that we created.”

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute

Journal information

1. Muranaka, A., Yonehara, M. & Uchiyama, M. Azuleneocyanine: A new family of phtalocyanines with intense near-IR absorption. Journal of the American Chemical Society 132, 7844–7845 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6354
http://www.researchsea.com

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>