Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

False killer whales use acoustic squint to target prey

22.03.2012
False killer whales focus echolocation clicks

Hunting in the ocean's murky depths, vision is of little use, so toothed whales and dolphins (odontocetes) rely on echolocation to locate tasty morsels with incredible precision. Laura Kloepper from the University of Hawaii, USA, explains that odontocetes produce their distinctive echolocation clicks in nasal structures in the forehead and broadcast them through a fat-filled acoustic lens, called the melon.

'Studies by other people showed odontocetes have the ability to control the shape of the echolocation beam and it has always been assumed that they are using the melon to focus sound' explains Kloepper. However, no one had ever tested this directly, so Kloepper and her PhD supervisor, Paul Nachtigall, decided to tackle the question. They publish their discovery that false killer whales are able to focus their echolocation beams on targets in The Journal of Experimental Biology at http://jeb.biologists.org.

So, how did the team make this amazing discovery? Fortunately, the duo is based at the Marine Mammal Research Program at the University of Hawaii, which is home to Kina the false killer whale. Kloepper explains that Kina is extremely adept at working with marine biologists after decades of dedicated work by Marlee Breese and her training staff. On this occasion, Kina had been trained to recognise a 37.85-mm-wide cylinder with 6.35-mm-thick walls by echolocation, signalling that she had recognised the cylinder by touching a button in return for a fish reward. However, when Kina encountered other cylinders – with different wall thicknesses – she was trained to remain still before receiving her fishy prize. The team then selected two other cylinders to test her echolocation abilities:

one with much thicker walls (7.163mm) that Kina could detect with ease and another with only marginally thicker walls (6.553mm) that Kina had more difficulty distinguishing from the 6.35mm cylinder. Then, over a period of weeks, Nachtigall, Breese and Kloepper randomly presented the cylinders to Kina at distances ranging from 2.5 to 7m, while noting her success rate and recording the cross-sectional area of her echolocation clicks with an array of hydrophones located between her and the cylinder.

But there was a problem: the width of an acoustic beam is determined by the frequency of the sound. So how could the team tell whether a change in beam width was due to Kina focusing the sound or simply due to the physics of acoustics? They turned to statistician Megan Donahue. 'Using statistics, we can account for the natural relationship that exists between beam area and frequency', says Kloepper, allowing them to correct for the frequency-related beam width variation. Plotting the adjusted beam area against the distance to the target, Kloepper discovered that Kina's echolocation beam became wider when she was having difficulties distinguishing between the 6.553mm and 6.35mm cylinders and when the cylinders were more distant. The false killer whale was effectively 'squinting' and adjusting the size of her echolocation beam in response to the more difficult tasks.

But was she actually focusing on the objects, because the beam width seemed to be getting wider rather than focusing in? Kloepper realised that the beam only appeared wider at the cluster of hydrophones because the array was close to Kina. When she plotted the path of the acoustic beams as they emerged from the animal's melon and passed through the hydrophone array, it was clear that the beams that appeared widest at the hydrophones were focused furthest away while the narrowest beams must be focused on the nearest objects.

'This is the first time that someone created a basic design to show that there is differential focusing of the beam under different target and echolocation conditions', says Kloepper, who is keen to find out whether other species use Kina's focusing strategy.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/8/1306.abstract

REFERENCE: Kloepper, L. N., Nachtigall, P. E., Donahue, M. J. and Breese, M. (2012). Active echolocation beam focusing in the false killer whale, Pseudorca crassidens. J. Exp. Biol. 215, 1306-1312.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>