Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facts and Fascination: "Marine Biology" at 3000m above sea level

02.09.2011
A current exhibition by National Geographic Germany at the Museum of Natural History Vienna provides visitors with a fascinating insight into the world of palaeontology.

The exhibition presents 50 breath-taking photographs of the Dolomites along with research data. Researchers obtained this data from deposits of former marine life, found in the Dolomites´ Cretaceous origin. The data provides information on what lifestyle habits and climate were like 140 to 90 million years ago.

These results, from a project of the Austrian Science Fund FWF, are supplemented with a film that further shows the beauty of the analysed fossils, as well as the adverse conditions under which science is conducted 3000m above sea level. The exhibition therefore not only presents research results, but also puts them into an exciting context.

Mountains aren´t what they used to be. This applies in particular to the Dolomites. Around 140 to 90 million years ago, they were in fact part of the sea floor rather than mountains - thousands of meters high. Over millions of years, deposits were then formed from calcareous shells of marine life from the Mesozoic era. Tectonic forces later caused these sediments to rise upward to the mountaintops of today´s well-known and popular Southern Alps. The mountain range contains one of the most complete and most accessible geological records - also being one of the richest in fossils - from the Cretaceous period in Europe. This record was scientifically analysed in-depth for the first time within the framework of a project supported by the Austrian Science Fund FWF. In addition to basic analyses of the deposits, researchers also examined questions regarding the habitat and the biology of the original marine life, as well as the climatic conditions which existed at the time.

RESEARCH, FILM & PHOTOS
Initial results of the research project are now presented in a rather unusual way: As part of the exhibition entitled "Dolomiten - Das steinerne Herz der Welt" (Dolomites - the Stone Heart of the World), results will be presented to the public beginning on 2 September along with 50 photos by National Geographic photographer Georg Tappeiner and an exciting film. Senior researcher Dr. Alexander Lukeneder from the Geological and Paleontological Department of Vienna´s Museum of Natural History says: "When conveying the results of our research, we find it important to also present the adventure of research and its beauty, in addition to factual data. Georg Tappeiner´s beautiful photos capture the breath-taking aesthetics of the Dolomites. The film of the palaeontology team captures more than the attractiveness of research objects. It shows the difficulties and efforts of conducting research far from any infrastructure, in extreme cold and 3000m above sea level. This almost makes our results seem secondary."

Some of these results are, however, quite spectacular. Dr. Lukeneder´s international team proved that sea temperatures in the Mediterranean area rose by 10 to 12 degrees Celsius during the Lower Cretaceous period 140 to 90 million years ago. "We were able to prove this extreme greenhouse effect by means of special analyses of the calcareous stone. The origin of this stone lies in the deposits of dead nanoplankton and the sedimentation of calcareous microfossils, like the foraminifera," says Dr. Lukeneder about his work. While the marine organisms were still alive, oxygen was incorporated into their calcareous shells. The oxygen isotope ratio (18O to 16O) depended on the temperature of the surrounding water. The process of fossilisation preserved this biological thermometer perfectly for millions of years.

"HIGH" RESOLUTION
The overall aim of this international project was to conduct a high-resolution mapping of the Dolomites´ deposits from the Lower Cretaceous at 2500m above sea level. This included not only the analysis of macro- and microfossils and the isotope ratios, but also the study of rock layers (Puez Formation) and their magnetic relationships, as well as the influence of various cycles during the formation of these layers. The team consisting of 32 researchers focused especially on an area in the Puez-Geisler Nature Park, which was declared a World Natural Heritage site by UNESCO in 2009. The current exhibition at the Museum of Natural History Vienna shows, in a very impressive way, that this heritage site comprises both natural beauty and a data archive from the Cretaceous period that is many million of years old.
Image and text will be available online from Friday, 2 September 2011, 9 am CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201109-en.html

Scientific contact:
Dr. Alexander Lukeneder
Museum of Natural History Vienna
Burgring 7
1010 Vienna, Austria
T +43 / (0)1 / 521 77 - 251
E alexander.lukeneder@nhm-wien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201109-en.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>