Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fabric for Weaving Memory

24.10.2012
Neurobiologists at Vienna’s Research Institute of Molecular Pathology have identified a mechanism involved in the formation of long-term memory in fruit flies. They describe their findings in the current issue of the journal Neuron.

The details of memory formation are still largely unknown. It has, however, been established that the two kinds of memory – long term and short term – use different mechanisms. When short-term memory is formed, certain proteins in the nerve cells (neurons) of the brain are transiently modified.


Drosophila melanogaster
IMP/Solvin Zankl

To establish long-term memory, the cells have to synthesize new protein molecules. This has been shown in experiments with animals. When drugs were used to block protein synthesis, the treated animals were not able to form long-term memory.

The precise mechanism by which the newly synthesized proteins regulate memory formation is still poorly understood. They are thought to strengthen existing connections between neurons, as well as establish new connections. Both processes are required for long-term memory formation.
A nerve cell in the brain makes connections with tens of thousands of other nerve cells through so-called synapses. When memory is formed, only specific synapses, which are activated by a specific experience are modified. The mechanism of how the synthesis of new proteins can be restricted to these activated synapses has been unclear. Neurobiologists have postulated the existence of “synaptic tags”. One of the candidates is a family of proteins known to regulate local protein synthesis, the CPEB family of proteins. These proteins have been known for some time to perform important tasks during embryonic development, and recently have been identified in neuronal synapses.

In 2007, Krystyna Keleman, a neuroscientist at the Research Institute of Molecular Pathology (IMP) in Vienna, was able to show that fruit flies require CPEB proteins for long-term memory formation.
To study memory formation, the researchers at the IMP looked at the sexual behavior of flies. After copulation, female flies loose interest in the courtship advances of males. Male flies must learn – by trial and error – that only virgin females are receptive. The key to telling them apart is their smell.

Researchers at the IMP have built tiny “trainig camps” to test the memory of fruit flies. In these devices, male flies are exposed to mated females for a defined period of time. Depending on the length of the training session, the resulting memory lasts for several hours to several days.

To find out how these molecules might function in long-term memory, Sebastian Krüttner, a doctoral student with Krystyna Keleman at the IMP, devoted the past five years to this question. He identified two very similar CPEB proteins in flies, Orb2A and Orb2B, as the key molecules. While both isoforms are required for the formation of long-term memory, they function by distinct mechanisms in this process.

After conducting a large number of genetic, biochemical and behavioral experiments, the IMP scientists now propose the following model for long-term memory formation: a learning experience – as in the courtship conditioning procedure – leads to the activation of Orb2A in certain synapses only. In these synapses, Orb2A recruits Orb2B into complexes, which in turn alter protein synthesis locally only in these activated synapses, thereby forming stable memories.

This model, which is described in the current issue of the journal Neuron, is somewhat unconventional. The fact that two very similar molecules have such different functions was unexpected. Even more surprising is the role of Orb2A, which does not require its protein binding domain – a region previously thought to be essential for CPEB proteins.

The mechanism by which the two proteins interact in the formation of memory might turn out to be a basic principle for members of the CPEB family. Since these proteins are highly conserved among animals including humans, the implications could be far reaching.

The paper „Drosophila CPEB Orb2A mediates memory independent of ist RNA-binding domain“ by Sebastian Krüttner et al. was published in the journal Neuron on October 18, 2012.
About Krystyna Keleman
Krystyna Keleman was born in Warsaw (Poland) and received her professional training in the USA and Switzerland. She graduated as a developmental neurobiologist from the University of Zurich. In 1998, Krystyna Keleman moved to Vienna where she currently holds an independent group leader position at the Research Institute of Molecular Pathology.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.

Contact
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
hurtl@imp.ac.at

Scientific Contact
keleman@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at/research/research-groups/keleman-group/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>