Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fabric for Weaving Memory

24.10.2012
Neurobiologists at Vienna’s Research Institute of Molecular Pathology have identified a mechanism involved in the formation of long-term memory in fruit flies. They describe their findings in the current issue of the journal Neuron.

The details of memory formation are still largely unknown. It has, however, been established that the two kinds of memory – long term and short term – use different mechanisms. When short-term memory is formed, certain proteins in the nerve cells (neurons) of the brain are transiently modified.


Drosophila melanogaster
IMP/Solvin Zankl

To establish long-term memory, the cells have to synthesize new protein molecules. This has been shown in experiments with animals. When drugs were used to block protein synthesis, the treated animals were not able to form long-term memory.

The precise mechanism by which the newly synthesized proteins regulate memory formation is still poorly understood. They are thought to strengthen existing connections between neurons, as well as establish new connections. Both processes are required for long-term memory formation.
A nerve cell in the brain makes connections with tens of thousands of other nerve cells through so-called synapses. When memory is formed, only specific synapses, which are activated by a specific experience are modified. The mechanism of how the synthesis of new proteins can be restricted to these activated synapses has been unclear. Neurobiologists have postulated the existence of “synaptic tags”. One of the candidates is a family of proteins known to regulate local protein synthesis, the CPEB family of proteins. These proteins have been known for some time to perform important tasks during embryonic development, and recently have been identified in neuronal synapses.

In 2007, Krystyna Keleman, a neuroscientist at the Research Institute of Molecular Pathology (IMP) in Vienna, was able to show that fruit flies require CPEB proteins for long-term memory formation.
To study memory formation, the researchers at the IMP looked at the sexual behavior of flies. After copulation, female flies loose interest in the courtship advances of males. Male flies must learn – by trial and error – that only virgin females are receptive. The key to telling them apart is their smell.

Researchers at the IMP have built tiny “trainig camps” to test the memory of fruit flies. In these devices, male flies are exposed to mated females for a defined period of time. Depending on the length of the training session, the resulting memory lasts for several hours to several days.

To find out how these molecules might function in long-term memory, Sebastian Krüttner, a doctoral student with Krystyna Keleman at the IMP, devoted the past five years to this question. He identified two very similar CPEB proteins in flies, Orb2A and Orb2B, as the key molecules. While both isoforms are required for the formation of long-term memory, they function by distinct mechanisms in this process.

After conducting a large number of genetic, biochemical and behavioral experiments, the IMP scientists now propose the following model for long-term memory formation: a learning experience – as in the courtship conditioning procedure – leads to the activation of Orb2A in certain synapses only. In these synapses, Orb2A recruits Orb2B into complexes, which in turn alter protein synthesis locally only in these activated synapses, thereby forming stable memories.

This model, which is described in the current issue of the journal Neuron, is somewhat unconventional. The fact that two very similar molecules have such different functions was unexpected. Even more surprising is the role of Orb2A, which does not require its protein binding domain – a region previously thought to be essential for CPEB proteins.

The mechanism by which the two proteins interact in the formation of memory might turn out to be a basic principle for members of the CPEB family. Since these proteins are highly conserved among animals including humans, the implications could be far reaching.

The paper „Drosophila CPEB Orb2A mediates memory independent of ist RNA-binding domain“ by Sebastian Krüttner et al. was published in the journal Neuron on October 18, 2012.
About Krystyna Keleman
Krystyna Keleman was born in Warsaw (Poland) and received her professional training in the USA and Switzerland. She graduated as a developmental neurobiologist from the University of Zurich. In 1998, Krystyna Keleman moved to Vienna where she currently holds an independent group leader position at the Research Institute of Molecular Pathology.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.

Contact
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
hurtl@imp.ac.at

Scientific Contact
keleman@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at/research/research-groups/keleman-group/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>