Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyespot breakthrough welcomed

29.11.2010
John Innes Centre researchers are working with plant breeders to understand more about the economically important fungal disease, eyespot and identify novel sources of genetic resistance to the disease that could be used to protect our cereal crops.

Eyespot is a fungal disease of cereals, affecting the stem base and causing large yield losses, making it economically important, especially in areas such as North West Europe and North West USA where mild damp autumns are ideal for its growth. Chemical control using fungicides, as well as being environmentally unsound, is often not cost effective for farmers, so crop varieties with higher levels of resistance are needed to help combat this disease

Dr Paul Nicholson, funded by the Biotechnology and Biological Sciences Research Council, has been working with the Home-Grown Cereals Authority (HGCA) and the plant breeding company RAGT Seeds, through a CASE studentship awarded to Chris Burt, to understand the disease and identify new sources of resistance.

Very little variation in genetic resistance to eyespot exists in commercially-grown wheat varieties. In most instances, any moderate resistance in varieties was thought to derive from a single gene, Pch2, bred in from a French wheat, Cappelle Desprez in the 1950s.

Eyespot is caused by two different, co-existing fungal species, Oculimacula yallundae and Oculimacula acuformis, and recent research from the John Innes Centre is now suggesting that the resistance derived from Pch2 is differentially effective against the two species. Publishing in the journal Plant Pathology, Dr Paul Nicholson and his group have shown that the Pch2 gene is significantly less effective against O. yallundae than against O. acuformis.

“In all probability this resistance is not, as previously supposed, responsible for the partial resistance observed in many varieties,” said Dr Nicholson. “We have now characterised a source of genetic resistance that is effective against both eyespot pathogens, and it is this, rather than Pch2, that we believe confers the partial protection observed in moderately eyespot-resistant commercial wheat varieties.”

The group looked at a second reported component of the resistance in Cappelle Desprez, but on a different chromosome to the Pch2 gene. Publishing in the journal Theoretical and Applied Genetics they found that this confers significant resistance to both eyespot pathogens, and at both the seedling and adult stage, making it much more effective than Pch2 alone.

“Breeders thought that they were working with Pch2 while, in fact, if they had moderate eyespot resistance it was most probably coming from this other gene in Cappelle Desprez,” said Dr Nicholson.

“This suggests that using Pch2 as the sole source of genetic resistance may not provide adequate protection against eyespot where the predominant cause of eyespot is O. yallundae. Currently, in the UK, O. acuformis predominates but there is evidence that a shift in the type of fungicide used may be reducing this prevalence in favour of O. yallundae.”

“In the search for genetic resistance against eyespot, it is going to be critical that we test any potential candidates for resistance against both species.”

The group have found nearby genetic markers, which can be used by plant breeders to breed this resistance into commercial wheat varieties.

“This is an excellent example of applied research translating benefits all the way from lab bench through breeder hands and into farmer’s fields,” noted Peter Jack, cereal genotyping lead at RAGT Seeds. “It also prepares the ground for improvements in fundamental knowledge of plant-pathogen interactions and more generic benefits for a wide range of pathogen species.”

Sarah Holdgate, lead cereal Pathologist for RAGT Seeds, added: “although eyespot is a globally important fungal pathogen, conventional approaches to the identification of resistant lines are time consuming and costly. This research, through dissection of resistance components and identification of linked markers, will clearly facilitate breeding of naturally resistant varieties.”

“This is a very good example where coordination between funding bodies, BBSRC and HGCA, has enabled breeders to work directly with public sector researchers to tackle an important yield impacting trait,” commented Richard Summers, R & D chairman of the British Society of Plant Breeders (BSPB) and cereal breeding lead, RAGT Seeds. “This is a model we would like to see develop further.”

Andrew Chapple | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cappelle HGCA Nicholson Oculimacula PCH2 Publishing RAGT eyespot genetic marker genetic resistance

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>