Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyespot breakthrough welcomed

29.11.2010
John Innes Centre researchers are working with plant breeders to understand more about the economically important fungal disease, eyespot and identify novel sources of genetic resistance to the disease that could be used to protect our cereal crops.

Eyespot is a fungal disease of cereals, affecting the stem base and causing large yield losses, making it economically important, especially in areas such as North West Europe and North West USA where mild damp autumns are ideal for its growth. Chemical control using fungicides, as well as being environmentally unsound, is often not cost effective for farmers, so crop varieties with higher levels of resistance are needed to help combat this disease

Dr Paul Nicholson, funded by the Biotechnology and Biological Sciences Research Council, has been working with the Home-Grown Cereals Authority (HGCA) and the plant breeding company RAGT Seeds, through a CASE studentship awarded to Chris Burt, to understand the disease and identify new sources of resistance.

Very little variation in genetic resistance to eyespot exists in commercially-grown wheat varieties. In most instances, any moderate resistance in varieties was thought to derive from a single gene, Pch2, bred in from a French wheat, Cappelle Desprez in the 1950s.

Eyespot is caused by two different, co-existing fungal species, Oculimacula yallundae and Oculimacula acuformis, and recent research from the John Innes Centre is now suggesting that the resistance derived from Pch2 is differentially effective against the two species. Publishing in the journal Plant Pathology, Dr Paul Nicholson and his group have shown that the Pch2 gene is significantly less effective against O. yallundae than against O. acuformis.

“In all probability this resistance is not, as previously supposed, responsible for the partial resistance observed in many varieties,” said Dr Nicholson. “We have now characterised a source of genetic resistance that is effective against both eyespot pathogens, and it is this, rather than Pch2, that we believe confers the partial protection observed in moderately eyespot-resistant commercial wheat varieties.”

The group looked at a second reported component of the resistance in Cappelle Desprez, but on a different chromosome to the Pch2 gene. Publishing in the journal Theoretical and Applied Genetics they found that this confers significant resistance to both eyespot pathogens, and at both the seedling and adult stage, making it much more effective than Pch2 alone.

“Breeders thought that they were working with Pch2 while, in fact, if they had moderate eyespot resistance it was most probably coming from this other gene in Cappelle Desprez,” said Dr Nicholson.

“This suggests that using Pch2 as the sole source of genetic resistance may not provide adequate protection against eyespot where the predominant cause of eyespot is O. yallundae. Currently, in the UK, O. acuformis predominates but there is evidence that a shift in the type of fungicide used may be reducing this prevalence in favour of O. yallundae.”

“In the search for genetic resistance against eyespot, it is going to be critical that we test any potential candidates for resistance against both species.”

The group have found nearby genetic markers, which can be used by plant breeders to breed this resistance into commercial wheat varieties.

“This is an excellent example of applied research translating benefits all the way from lab bench through breeder hands and into farmer’s fields,” noted Peter Jack, cereal genotyping lead at RAGT Seeds. “It also prepares the ground for improvements in fundamental knowledge of plant-pathogen interactions and more generic benefits for a wide range of pathogen species.”

Sarah Holdgate, lead cereal Pathologist for RAGT Seeds, added: “although eyespot is a globally important fungal pathogen, conventional approaches to the identification of resistant lines are time consuming and costly. This research, through dissection of resistance components and identification of linked markers, will clearly facilitate breeding of naturally resistant varieties.”

“This is a very good example where coordination between funding bodies, BBSRC and HGCA, has enabled breeders to work directly with public sector researchers to tackle an important yield impacting trait,” commented Richard Summers, R & D chairman of the British Society of Plant Breeders (BSPB) and cereal breeding lead, RAGT Seeds. “This is a model we would like to see develop further.”

Andrew Chapple | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cappelle HGCA Nicholson Oculimacula PCH2 Publishing RAGT eyespot genetic marker genetic resistance

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>