Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All eyes on retinal degeneration

17.02.2010
Research by Johns Hopkins sensory biologists studying fruit flies, has revealed a critical step in fly vision. Humans with problems in this same step suffer retinal dystrophies, which manifest as visual defects ranging from mild visual impairments to complete blindness. The article, published Jan. 26 in Current Biology paves the way for using the fruit fly to screen for therapies to treat human retinal degeneration.

Retinal dystrophies result from inherited defects in nearly every step of the so-called "visual cycle," a series of biochemical reactions known to occur in vertebrates, which recycles the molecule that enables light detection in eye cells. "Therapeutic approaches to tackle such retinal dystrophies are very limited," says Craig Montell, Ph.D., a professor of biological chemistry and of neuroscience at the Johns Hopkins University School of Medicine. "So it's useful to take advantage of simpler experimental model organisms, like fruit flies, to tease apart complex systems like vision, then translate that to use in vertebrates."

This visual cycle previously was not thought to exist in invertebrate eyes. In fact, according to Montell, those who study fly vision long thought that as the molecules in the fly eye responsible for capturing photons of light can be regenerated by absorbing more light, they don't need a visual cycle for the cells to reuse the molecule.

Curious about whether one particular enzyme in the fly eye — pigment-cell-enriched dehydrogenase (PDH) — plays a role in the fly's ability to make the molecules that sense light, Montell and his research team generated flies carrying a mutation in the gene encoding PDH. They found the newly hatched flies lacking PDH to be totally normal in their ability to respond to light.

"It was a surprise. Initially the PDH looked dispensable as the visual responses were normal, but over time the pigment degraded," says Montell. "This led us to ask the question: If PDH doesn't make new light-sensing molecules, and flies can recycle them using light anyway, why are these flies losing their light-detecting molecules and consequently their sight?"

As it turns out, Montell and his team found PDH is required to help recycle the used light-capturing molecules in a previously unrecognized visual cycle in flies. Flies can recycle the molecules by absorbing light, but eventually the protein that holds the molecules in the cells needs to be replaced with new protein. When this happens the biochemical visual cycle is needed to regenerate the light sensing molecules. Over time, in pdh mutant flies, without a functional visual cycle, the used light-sensitive molecules were not regenerated causing cells in the retina to die, leading to vision loss.

To get an idea of how comparable the visual cycle is in flies and mammals, the team replaced the fly gene for PDH with a gene for a similar mammalian enzyme. These flies had normal electrical activity in cells of the retina in response to light, were able to maintain proper levels of light sensitive molecules, and had healthy retinas. This experiment showed the researchers that there are similarities in the visual cycles in mammals and flies.

"Flies are a good model in which to study and test new therapies for retinal degeneration," says Montell. "This research opens the door to using flies as a way to look for drugs to reduce human retinal degeneration due to defects in the visual cycle."

This study was funded by the National Eye Institute.

Authors of the text were Xiaoyue Wang, Tao Wang, Yuchen Jiao and Craig Montell from Johns Hopkins University and Johannes von Lintig from the Case Western Reserve University School of Medicine, Cleveland.

On the Web:
Craig Montell: http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g_A13E315C00C04DFD949FD3E57BA45181:ID%3D80

Current Biology: http://www.cell.com/current-biology/

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>