Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All eyes on retinal degeneration

17.02.2010
Research by Johns Hopkins sensory biologists studying fruit flies, has revealed a critical step in fly vision. Humans with problems in this same step suffer retinal dystrophies, which manifest as visual defects ranging from mild visual impairments to complete blindness. The article, published Jan. 26 in Current Biology paves the way for using the fruit fly to screen for therapies to treat human retinal degeneration.

Retinal dystrophies result from inherited defects in nearly every step of the so-called "visual cycle," a series of biochemical reactions known to occur in vertebrates, which recycles the molecule that enables light detection in eye cells. "Therapeutic approaches to tackle such retinal dystrophies are very limited," says Craig Montell, Ph.D., a professor of biological chemistry and of neuroscience at the Johns Hopkins University School of Medicine. "So it's useful to take advantage of simpler experimental model organisms, like fruit flies, to tease apart complex systems like vision, then translate that to use in vertebrates."

This visual cycle previously was not thought to exist in invertebrate eyes. In fact, according to Montell, those who study fly vision long thought that as the molecules in the fly eye responsible for capturing photons of light can be regenerated by absorbing more light, they don't need a visual cycle for the cells to reuse the molecule.

Curious about whether one particular enzyme in the fly eye — pigment-cell-enriched dehydrogenase (PDH) — plays a role in the fly's ability to make the molecules that sense light, Montell and his research team generated flies carrying a mutation in the gene encoding PDH. They found the newly hatched flies lacking PDH to be totally normal in their ability to respond to light.

"It was a surprise. Initially the PDH looked dispensable as the visual responses were normal, but over time the pigment degraded," says Montell. "This led us to ask the question: If PDH doesn't make new light-sensing molecules, and flies can recycle them using light anyway, why are these flies losing their light-detecting molecules and consequently their sight?"

As it turns out, Montell and his team found PDH is required to help recycle the used light-capturing molecules in a previously unrecognized visual cycle in flies. Flies can recycle the molecules by absorbing light, but eventually the protein that holds the molecules in the cells needs to be replaced with new protein. When this happens the biochemical visual cycle is needed to regenerate the light sensing molecules. Over time, in pdh mutant flies, without a functional visual cycle, the used light-sensitive molecules were not regenerated causing cells in the retina to die, leading to vision loss.

To get an idea of how comparable the visual cycle is in flies and mammals, the team replaced the fly gene for PDH with a gene for a similar mammalian enzyme. These flies had normal electrical activity in cells of the retina in response to light, were able to maintain proper levels of light sensitive molecules, and had healthy retinas. This experiment showed the researchers that there are similarities in the visual cycles in mammals and flies.

"Flies are a good model in which to study and test new therapies for retinal degeneration," says Montell. "This research opens the door to using flies as a way to look for drugs to reduce human retinal degeneration due to defects in the visual cycle."

This study was funded by the National Eye Institute.

Authors of the text were Xiaoyue Wang, Tao Wang, Yuchen Jiao and Craig Montell from Johns Hopkins University and Johannes von Lintig from the Case Western Reserve University School of Medicine, Cleveland.

On the Web:
Craig Montell: http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g_A13E315C00C04DFD949FD3E57BA45181:ID%3D80

Current Biology: http://www.cell.com/current-biology/

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>