Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Eye on Stem Cells

05.12.2011
Heidelberg scientists investigate the retina of the medaka fish with permanent genetic cell labelling

A single stem cell has the potential to generate offspring that differentiates into a variety of specialised cell types. This has now been shown by a team of Heidelberg biologists in the adult retina of the medaka fish as a model system.


By means of single cell transplantation from four different transgenic fish lines (on the right) the scientists generated a retina with several different Arched Continuous Stripes (ArCoS). The concentric layers for each coloured stripe represent all different cell types of the retina. For orientation: The fish eye is viewed from a lateral position and the round white structure in the middle is the lens. Figure: Centre for Organismal Studies

By applying permanent genetic cell labelling to the retinal stem cells, the scientists Prof. Dr. Joachim Wittbrodt and Dr. Lázaro Centanin from the Heidelberg University's Centre for Organismal Studies could show that a single retinal stem cell is multi-potent and can develop into all retinal cell types. These results have been published in the journal „Cell Stem Cell“.

Stem cells help the body to grow or regenerate damaged cells or tissues. This universal response to various problems in the adult organism, even in the brain, is currently in the focus of research all over the world. One key question has so far remained unanswered: Is the “SWAT team” of stem cells a team of specialists or is it composed of individual universalists? In other words: does every cell type to be repaired require a special type of stem cells or can any single stem cell divide and generate offspring that fixes all problems in its respective environment?

To address this key question, the Heidelberg scientists combined a permanent genetic cell labelling technique with single cell transplantations in medaka fish as a model organism. Thus, the research group headed by Prof. Wittbrodt could label single stem cells in the medaka retina and all of their descendants in a complete lineage tree. This allowed them to study the behaviour of single stem cells in their “natural” environment, namely the growing fish retina. The results obtained in this study demonstrate that retinal stem cells are multi-potent and a single stem cell can develop into all retinal cell types.

Experimentally this is highlighted by the formation of so-called Arched Continuous Stripes (ArCoS), labelled stripes that go through the entire retina and contain all retinal cell types. All these ArCoS originate in a single retinal stem cell. “Interestingly, different cell types within an ArCoS are more closely related than neighbouring cells of one cell type”, says Lázaro Centanin, postdoctoral researcher in the Wittbrodt group.

The results indicate that the growth of the retina is regulated by controlling stem cell proliferation, while the differentiation into specific cell types proceeds as an intrinsic programme. “It‘s as if a house was built by a universal craftsman who does it all, laying bricks, plastering, plumbing and roofing all simultaneously because the craftsman it is able to split himself up“, says Joachim Wittbrodt, director of Heidelberg University's Centre for Organismal Studies and at the same time head of the Institute of Toxicology and Genetics at Karlsruhe Institute of Technology (KIT).

In addition, the scientists could show that in the same organ – the fish eye – a second class of stem cells exists besides the multi-potent retinal stem cells: the stem cells of the pigmented epithelium. According to Prof. Wittbrodt, the growth rates of both stem cell populations are closely correlated. The retinal pigment stem cells, however, have a limited potential and are merely unipotent.

Apart from its relevance for basic research in retinal growth and regeneration, the methods developed and applied in this study have great potential for future research. The genetic labelling of single stem cells and all their descendants in the medaka eye, which grows in a tightly controlled temporal and spatial sequence throughout its entire life, will allow insights into the behaviour and the key developmental processes of single stem cells and their descendants in the intact living organ. This will also allow Prof. Wittbrodt's research group to further study the relevant regulatory mechanisms in individual cells in the context of the entire organism.

For more information, go to http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt?l=_e.

Original publication:
L. Centanin, B. Hoeckendorf, J. Wittbrodt: Fate Restriction and Multipotency in Retinal Stem Cells. Cell Stem Cell (2011), doi: 10.1016/j.stem.2011.11.004
Contact:
Prof. Dr. Joachim Wittbrodt Heidelberg
University – Centre for Organismal Studies
KIT – Institute of Toxicology and Genetics
Phone: +49 6221 54-6499
jochen.wittbrodt@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.cos.uni-heidelberg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>