Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Eye on Stem Cells

05.12.2011
Heidelberg scientists investigate the retina of the medaka fish with permanent genetic cell labelling

A single stem cell has the potential to generate offspring that differentiates into a variety of specialised cell types. This has now been shown by a team of Heidelberg biologists in the adult retina of the medaka fish as a model system.


By means of single cell transplantation from four different transgenic fish lines (on the right) the scientists generated a retina with several different Arched Continuous Stripes (ArCoS). The concentric layers for each coloured stripe represent all different cell types of the retina. For orientation: The fish eye is viewed from a lateral position and the round white structure in the middle is the lens. Figure: Centre for Organismal Studies

By applying permanent genetic cell labelling to the retinal stem cells, the scientists Prof. Dr. Joachim Wittbrodt and Dr. Lázaro Centanin from the Heidelberg University's Centre for Organismal Studies could show that a single retinal stem cell is multi-potent and can develop into all retinal cell types. These results have been published in the journal „Cell Stem Cell“.

Stem cells help the body to grow or regenerate damaged cells or tissues. This universal response to various problems in the adult organism, even in the brain, is currently in the focus of research all over the world. One key question has so far remained unanswered: Is the “SWAT team” of stem cells a team of specialists or is it composed of individual universalists? In other words: does every cell type to be repaired require a special type of stem cells or can any single stem cell divide and generate offspring that fixes all problems in its respective environment?

To address this key question, the Heidelberg scientists combined a permanent genetic cell labelling technique with single cell transplantations in medaka fish as a model organism. Thus, the research group headed by Prof. Wittbrodt could label single stem cells in the medaka retina and all of their descendants in a complete lineage tree. This allowed them to study the behaviour of single stem cells in their “natural” environment, namely the growing fish retina. The results obtained in this study demonstrate that retinal stem cells are multi-potent and a single stem cell can develop into all retinal cell types.

Experimentally this is highlighted by the formation of so-called Arched Continuous Stripes (ArCoS), labelled stripes that go through the entire retina and contain all retinal cell types. All these ArCoS originate in a single retinal stem cell. “Interestingly, different cell types within an ArCoS are more closely related than neighbouring cells of one cell type”, says Lázaro Centanin, postdoctoral researcher in the Wittbrodt group.

The results indicate that the growth of the retina is regulated by controlling stem cell proliferation, while the differentiation into specific cell types proceeds as an intrinsic programme. “It‘s as if a house was built by a universal craftsman who does it all, laying bricks, plastering, plumbing and roofing all simultaneously because the craftsman it is able to split himself up“, says Joachim Wittbrodt, director of Heidelberg University's Centre for Organismal Studies and at the same time head of the Institute of Toxicology and Genetics at Karlsruhe Institute of Technology (KIT).

In addition, the scientists could show that in the same organ – the fish eye – a second class of stem cells exists besides the multi-potent retinal stem cells: the stem cells of the pigmented epithelium. According to Prof. Wittbrodt, the growth rates of both stem cell populations are closely correlated. The retinal pigment stem cells, however, have a limited potential and are merely unipotent.

Apart from its relevance for basic research in retinal growth and regeneration, the methods developed and applied in this study have great potential for future research. The genetic labelling of single stem cells and all their descendants in the medaka eye, which grows in a tightly controlled temporal and spatial sequence throughout its entire life, will allow insights into the behaviour and the key developmental processes of single stem cells and their descendants in the intact living organ. This will also allow Prof. Wittbrodt's research group to further study the relevant regulatory mechanisms in individual cells in the context of the entire organism.

For more information, go to http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt?l=_e.

Original publication:
L. Centanin, B. Hoeckendorf, J. Wittbrodt: Fate Restriction and Multipotency in Retinal Stem Cells. Cell Stem Cell (2011), doi: 10.1016/j.stem.2011.11.004
Contact:
Prof. Dr. Joachim Wittbrodt Heidelberg
University – Centre for Organismal Studies
KIT – Institute of Toxicology and Genetics
Phone: +49 6221 54-6499
jochen.wittbrodt@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.cos.uni-heidelberg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>