Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An eye gene colors butterfly wings red

22.07.2011
Red may mean STOP or I LOVE YOU! A red splash on a toxic butterfly's wing screams DON'T EAT ME! In nature, one toxic butterfly species may mimic the wing pattern of another toxic species in the area. By using the same signal, they send a stronger message: DON'T EAT US!

Now several research teams that include Smithsonian scientists in Panama, have discovered that Heliconius butterflies mimic each other's red wing patterns through changes in the same gene.

Not only does this gene lead to the same red wing patterns in neighboring species, it also leads to a large variety of red wing patterns in Heliconius species across the Americas that result when it is turned on in other areas of the wings.

Because different butterfly species evolved red wing patterns independently, resulting in a huge variety of patterns we see today, researchers thought that different genes were responsible in each case.

"The variety of wing patterns in Heliconius butterflies has always fascinated collectors," said Owen McMillan, geneticist at the Smithsonian Tropical Research Institute, "People have been trying to sort out the genetics of mimicry rings since the 1970's. Now we put together some old genetics techniques and some newer genomics techniques and came up with the very surprising result that only one gene codes for all of the red wing patterns. The differences that we see in the patterns seems to be due to the way the gene is regulated."

First the team used genetic screens to look for genes that are turned on differently in butterflies with red wing patterns and lacking in other butterflies without this pattern. When they discovered a promising gene, they used stains to show where this gene was expressed on butterfly wings showing different patterns. They found the gene to be expressed exactly where red pigment occurs in the wings in every case. The match was so perfect that they could identify subtle differences in red patterns between species using these stains.

They combed genetic libraries—gene banks— to see if the gene they found matched genes characterized in other studies. "We found that the same gene that codes for the red in Heliconius wings was already identified as a gene called optix that is involved in eye development in other organisms," said co-author Heather Hines, "It is intriguing that the ommochrome pigments that color these wings red are also expressed in the eye. How the optix gene codes for wing color raises a host of new questions."

"Tropical biologists have been striving for centuries to explain what it is that makes life in the tropics so biologically diverse," said STRI Director, Eldredge Bermingham, "Now this group has discovered that a single gene underlies one of the most spectacular evolutionary radiations in nature! Perhaps the genetic basis for diversity will turn out to be far more simple than we expected."

STRI, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: www.stri.org.

reference: Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen, R., Halder, G., Nijhout, H.F., McMillan, W. O. Heliconius butterfly wing pattern mimicry is driven by optix cis-regulatory variation. Science.

Authors and Institutions:
Robert D. Reed, University of California, Irvine
Riccardo Papa, University of California, Irvine and University of Puerto Rico, Rio Piedras
Arnaud Martin, University of California, Irvine
Heather Hines, North Carolina State University
Brian A. Counterman, Mississippi State University
Carolina Pardo-Diaz, Cambridge University
Chris D. Jiggins, Cambridge University
Nicola L. Chamberlain, Harvard University
Marcus R. Kronforst, Harvard University
Rui Chen, Baylor Human Genome Sequencing Center
Georg Halder, M.D. Anderson Cancer Center
H. Frederik Nijhout, Duke University
W. Owen McMillan, Smithsonian Tropical Research Institute and North Carolina State University

Beth King | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>