Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An eye gene colors butterfly wings red

22.07.2011
Red may mean STOP or I LOVE YOU! A red splash on a toxic butterfly's wing screams DON'T EAT ME! In nature, one toxic butterfly species may mimic the wing pattern of another toxic species in the area. By using the same signal, they send a stronger message: DON'T EAT US!

Now several research teams that include Smithsonian scientists in Panama, have discovered that Heliconius butterflies mimic each other's red wing patterns through changes in the same gene.

Not only does this gene lead to the same red wing patterns in neighboring species, it also leads to a large variety of red wing patterns in Heliconius species across the Americas that result when it is turned on in other areas of the wings.

Because different butterfly species evolved red wing patterns independently, resulting in a huge variety of patterns we see today, researchers thought that different genes were responsible in each case.

"The variety of wing patterns in Heliconius butterflies has always fascinated collectors," said Owen McMillan, geneticist at the Smithsonian Tropical Research Institute, "People have been trying to sort out the genetics of mimicry rings since the 1970's. Now we put together some old genetics techniques and some newer genomics techniques and came up with the very surprising result that only one gene codes for all of the red wing patterns. The differences that we see in the patterns seems to be due to the way the gene is regulated."

First the team used genetic screens to look for genes that are turned on differently in butterflies with red wing patterns and lacking in other butterflies without this pattern. When they discovered a promising gene, they used stains to show where this gene was expressed on butterfly wings showing different patterns. They found the gene to be expressed exactly where red pigment occurs in the wings in every case. The match was so perfect that they could identify subtle differences in red patterns between species using these stains.

They combed genetic libraries—gene banks— to see if the gene they found matched genes characterized in other studies. "We found that the same gene that codes for the red in Heliconius wings was already identified as a gene called optix that is involved in eye development in other organisms," said co-author Heather Hines, "It is intriguing that the ommochrome pigments that color these wings red are also expressed in the eye. How the optix gene codes for wing color raises a host of new questions."

"Tropical biologists have been striving for centuries to explain what it is that makes life in the tropics so biologically diverse," said STRI Director, Eldredge Bermingham, "Now this group has discovered that a single gene underlies one of the most spectacular evolutionary radiations in nature! Perhaps the genetic basis for diversity will turn out to be far more simple than we expected."

STRI, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: www.stri.org.

reference: Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen, R., Halder, G., Nijhout, H.F., McMillan, W. O. Heliconius butterfly wing pattern mimicry is driven by optix cis-regulatory variation. Science.

Authors and Institutions:
Robert D. Reed, University of California, Irvine
Riccardo Papa, University of California, Irvine and University of Puerto Rico, Rio Piedras
Arnaud Martin, University of California, Irvine
Heather Hines, North Carolina State University
Brian A. Counterman, Mississippi State University
Carolina Pardo-Diaz, Cambridge University
Chris D. Jiggins, Cambridge University
Nicola L. Chamberlain, Harvard University
Marcus R. Kronforst, Harvard University
Rui Chen, Baylor Human Genome Sequencing Center
Georg Halder, M.D. Anderson Cancer Center
H. Frederik Nijhout, Duke University
W. Owen McMillan, Smithsonian Tropical Research Institute and North Carolina State University

Beth King | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>