Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An eye gene colors butterfly wings red

Red may mean STOP or I LOVE YOU! A red splash on a toxic butterfly's wing screams DON'T EAT ME! In nature, one toxic butterfly species may mimic the wing pattern of another toxic species in the area. By using the same signal, they send a stronger message: DON'T EAT US!

Now several research teams that include Smithsonian scientists in Panama, have discovered that Heliconius butterflies mimic each other's red wing patterns through changes in the same gene.

Not only does this gene lead to the same red wing patterns in neighboring species, it also leads to a large variety of red wing patterns in Heliconius species across the Americas that result when it is turned on in other areas of the wings.

Because different butterfly species evolved red wing patterns independently, resulting in a huge variety of patterns we see today, researchers thought that different genes were responsible in each case.

"The variety of wing patterns in Heliconius butterflies has always fascinated collectors," said Owen McMillan, geneticist at the Smithsonian Tropical Research Institute, "People have been trying to sort out the genetics of mimicry rings since the 1970's. Now we put together some old genetics techniques and some newer genomics techniques and came up with the very surprising result that only one gene codes for all of the red wing patterns. The differences that we see in the patterns seems to be due to the way the gene is regulated."

First the team used genetic screens to look for genes that are turned on differently in butterflies with red wing patterns and lacking in other butterflies without this pattern. When they discovered a promising gene, they used stains to show where this gene was expressed on butterfly wings showing different patterns. They found the gene to be expressed exactly where red pigment occurs in the wings in every case. The match was so perfect that they could identify subtle differences in red patterns between species using these stains.

They combed genetic libraries—gene banks— to see if the gene they found matched genes characterized in other studies. "We found that the same gene that codes for the red in Heliconius wings was already identified as a gene called optix that is involved in eye development in other organisms," said co-author Heather Hines, "It is intriguing that the ommochrome pigments that color these wings red are also expressed in the eye. How the optix gene codes for wing color raises a host of new questions."

"Tropical biologists have been striving for centuries to explain what it is that makes life in the tropics so biologically diverse," said STRI Director, Eldredge Bermingham, "Now this group has discovered that a single gene underlies one of the most spectacular evolutionary radiations in nature! Perhaps the genetic basis for diversity will turn out to be far more simple than we expected."

STRI, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website:

reference: Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen, R., Halder, G., Nijhout, H.F., McMillan, W. O. Heliconius butterfly wing pattern mimicry is driven by optix cis-regulatory variation. Science.

Authors and Institutions:
Robert D. Reed, University of California, Irvine
Riccardo Papa, University of California, Irvine and University of Puerto Rico, Rio Piedras
Arnaud Martin, University of California, Irvine
Heather Hines, North Carolina State University
Brian A. Counterman, Mississippi State University
Carolina Pardo-Diaz, Cambridge University
Chris D. Jiggins, Cambridge University
Nicola L. Chamberlain, Harvard University
Marcus R. Kronforst, Harvard University
Rui Chen, Baylor Human Genome Sequencing Center
Georg Halder, M.D. Anderson Cancer Center
H. Frederik Nijhout, Duke University
W. Owen McMillan, Smithsonian Tropical Research Institute and North Carolina State University

Beth King | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>