Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme weather decides distribution of insects

21.02.2014
Extreme weather caused by climate change in the coming decades is likely to have profound implications for distributions of insects and other invertebrates. This is suggested by a new study of insects in tropical and temperate regions of Australia.

As climate change is progressing, the temperature of our planet increases. This is particularly important for the large group of animals that are cold-blooded (ectothermic), including insects. Their body temperature is ultimately determined by the ambient temperature, and the same therefore applies to the speed and efficiency of their vital biological processes.


Fruit flies have been the model for a study that has shown how climate change may affect insect distribution in the future. (Photo: Ary A. Hoffmann)


Periods of extreme heat and thus drought may be the cause of death for many insects. (Photo: COLOURBOX).

But is it changes in average temperature or frequency of extreme temperature conditions that have the greatest impact on species distribution? This was the questions that a group of Danish and Australian researchers decided to examine in a number of insect species.

Johannes Overgaard, Department of Bioscience, Aarhus University, Denmark, Michael R. Kearney and Ary A. Hoffmann, Melbourne University, Australia, recently published the results of these studies in the journal Global Change Biology. The results demonstrate that it is especially the extreme temperature events that define the distribution of both tropical and temperate species. Thus climate change affects ectotermic animals primarily because more periods of extreme weather are expected in the future.

Fruit flies were modelled

The researchers examined 10 fruit fly species of the genus Drosophila adapted to tropical and temperate regions of Australia. First they examined the temperatures for which the species can sustain growth and reproduction, and then they found the boundaries of tolerance for hot and cold temperatures.

“This is the first time ever where we have been able to compare the effects of extremes and changes in average conditions in a rigorous manner across a group of species”, mentions Ary Hoffmann.

Based on this knowledge and knowledge of the present distribution of the 10 species they then examined if distribution was correlated to the temperatures required for growth and reproduction or rather limited by their tolerance to extreme temperature conditions.

"The answer was unambiguous: it is the species' tolerance to very cold or hot days that define their present distribution," says Johannes Overgaard.

It is therefore the extreme weather events, such as heat waves or extremely cold conditions, which costs the insects their life, not an increase in average temperature.

Periods of extreme heat and thus drought may be the cause of death for many insects. (Photo: COLOURBOX).

Drastic changes in store

With this information in hand, the researchers could then model how distributions are expected to change if climate change continues for the next 100 years.

Most terrestrial animals experience temperature variation on both daily and seasonal time scale, and they are adapted to these conditions. Thus, for a species to maintain its existence under varying temperature conditions there are two simple conditions that must be met. Firstly, the temperature should occasionally be such that the species can grow and reproduce, and secondly, the temperature must never be so extreme that the population's survival is threatened.

In temperate climate for example, there are many species which are adapted to endure low temperatures in the winter, and then grow and reproduce in the summer. In warmer climates, the challenge may be just the opposite. Here, the species might endure high temperatures during the dry hot summer, while growth and reproduction mainly occurs during the mild and wet winter period.

The result was discouraging for all 10 species.

"Climate change will result in fewer cold days and nights, and thus allow species to move toward higher latitudes. However climate change also leads to a higher incidence to extremely hot days and our model therefore predicts that the distribution of these species will be reduced to less than half their present distribution"says Johannes Overgaard.

“In fact, our predictions are that some species would disappear entirely in the next few decades, even when they have a fairly wide distribution that currently covers hundreds of kilometers”, adds Ary Hoffmann.

"Although none of the 10 species studied are normally perceived as either harmful or beneficial organisms for human society, the results indicate that distribution of many insect species will be changed dramatically, and it will probably also apply to many of the species that have particular social or commercial importance ", ends Johannes Overgaard.

Christina Troelsen/Johannes Overgaard | EurekAlert!
Further information:
http://www.au.dk
http://scitech.au.dk/en/roemer/feb14/ekstremt-vejr-afgoer-insekters-udbredelse/

More articles from Life Sciences:

nachricht New Computer Model Could Explain how Simple Molecules Took First Step Toward Life
29.07.2015 | Brookhaven National Laboratory

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>