Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extreme makeover chemistry style

Reaction remake could replace petrochemicals with biomass renewables

In revisiting a chemical reaction that's been in the literature for several decades and adding a new wrinkle of their own, researchers with Berkeley Lab and the University of California (UC) Berkeley have discovered a mild and relatively inexpensive procedure for removing oxygen from biomass.

This procedure, if it can be effectively industrialized, could allow many of today's petrochemical products, including plastics, to instead be made from biomass.

"We've found and optimized a selective, one-pot deoxygenation technique based on a formic acid treatment," said Robert Bergman, a co-principal investigator on this project who holds a joint appointment with Berkeley Lab's Chemical Sciences Division and the UC Berkeley Chemistry Department.

The formic acid, Bergman said, converts glycerol, a major and unwanted by-product in the manufacturing of biodiesel, into allyl alcohol, which is used as a starting material in the manufacturing of polymers, drugs, organic compounds, herbicides, pesticides and other chemical products. Allyl alcohol today is produced from the oxidation of petroleum.

Said Jonathan Ellman, a UC Berkeley chemistry professor and the other principal investigator in this research, "Right now, about five percent of the world's supply of petroleum is used to make feedstocks that are synthesized into commodity chemicals. If these feedstocks can instead be made from biomass they become renewable and their production will no longer be a detriment to the environment."

Biomass has been drawing wide public attention for its potential to be converted into carbon-neutral biofuels, but there is also huge potential for it to be converted into chemical feedstocks. It is safe to say that a day does not go by without each of us making use of multiple petrochemical products. Feedstocks for such products obtained from biomass rather than petroleum would be renewable as well as biodegradable. However, unlike petrochemical feedstocks, which are made by adding oxygen to petroleum, biomass feedstocks require the removal of oxygen from the raw material.

Bergman and Ellman, working with Elena Arceo, a Fulbright scholar from Spain, and Peter Marsden, a UC Berkely graduate student, used labeling experiments and a unique distillation system to take a new look at an old chemical reaction in which formic acid, the chemical found in bee venom, was used to remove oxygen from glycerol. In its original conception, the reaction was low-yielding, primarily because of substantial charring, an unselective combustion that leads to an intractable mixture under high heat. Bergman and Ellman found that simply protecting this reaction from air provided a much improved process for the deoxygenation of glycerol.

Said Bergman, "Treating glycerol with formic acid while directing a stream of nitrogen through the reaction mixture completely eliminates charring. Besides protecting the product from atmospheric oxidation, the nitrogen also facilitates distillation of the alcohol. The final product shows substantially improved yield (80-percent) and higher selectivity."

Said Ellman, "From our studies we also gained a much better understanding of the basic chemistry behind the reaction. We thought that the charring was a random oxidation process because the reaction had been carried out in air and we expected that running it in a nitrogen environment would improve things. However, in studying the basic chemistry we uncovered an unexpected reaction pathway that really broadens the generality of this reaction and expands its potential applications."

With this new reaction pathway, the formic acid-mediated deoxygenation technique developed by Bergman and Ellman could be used to convert the carbohydrates in biomass, as well as other polyhdroxy compounds, into the chemical feedstocks, such as olefins (alkenes) that are now derived from petroleum. The technique could also prove useful in the process by which biomass is converted into liquid transportation fuels.

Said Bergman, "Our preliminary results with inexpensive biomass-derived polyols suggest that the reaction of polyhydroxy compounds with formic acid will be a valuable alternative for the manufacture of reduced oxygen content products. However, scaling this technique up so that biomass feedstocks are competitive with feedstocks derived from petroleum is going to be an engineering challenge."

Added Ellman, "Scaling the technique up to industrial levels is probably going to require the combined efforts of industrial and academic laboratories, but if we are able to one day make commodity chemicals as well as fuels from biomass, we can protect the atmosphere from further damage and at the same time help lower current carbon dioxide levels."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>