Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extra Copies of a Gene Carry Extra Risk

06.02.2009
The gene LIS1 is crucial for ensuring the proper placement of neurons in the developing brain. When it is missing, brains fail to develop their characteristic folds, resulting in defects. However, new research at the Weizmann Institute shows that having extra LIS1 genes can cause problems as well.

Is more of a good thing better? A gene known as LIS1 is crucial for ensuring the proper placement of neurons in the developing brain.

When an LIS1 gene is missing, brains fail to develop their characteristic folds; babies with lissencephaly, or “smooth brain,” are born severely mentally retarded. But new research by Prof. Orly Reiner of the Institute’s Molecular Genetics Department, which recently appeared in Nature Genetics, shows that having extra LIS1 genes can cause problems as well.

Reiner was the first to discover LIS1’s tie to lissencephaly, in 1993. Her latest study shows that LIS1 works by helping to determine polarity in the cell – how the various organelles are arranged inside the cell, as well as where it connects to neighboring cells. Neurons alter their polarity several times during development, especially when they take on an elongated shape and migrate to new locations in the brain.

But what if, rather than too little, the body has too much LIS1? One of the surprises to come out of the recent spate of post-human-genome research is the number of genes that can be repeated or deleted in an individual’s genome. Most extra copies of genes may be no more harmful than a computer backup disk, but scientists have been finding that some repeats can cause disease.

Research associate Dr. Tamar Sapir and lab technician Talia Levy, working in Reiner’s lab, developed a mouse model in which additional LIS1 protein was produced in the brain. The scientists found that the brains of these mice were a bit smaller than average. On closer inspection, they discovered a range of subtle changes in cell polarity and movement: nuclei within the proliferating zone tended to move faster, but with less control; rates of cell death were higher; and various factors in the cell became more disordered.

Reiner then asked whether their findings might apply to humans. Together with Jim Lupski and Drs. Weimin Bi and Oleg A. Shchelochkov of the Baylor College of Medicine in Houston, Texas, they searched through blood samples using a technique that matches a patient’s DNA with control DNA to identify additions or deletions in its sequence. They identified seven individuals with extra copies of either LIS1 or adjacent genes that are also involved in brain development. All suffered developmental abnormalities. Two of the patients – children with a second LIS1 gene – had previously been diagnosed with failure to thrive and delayed development, and were found to have small brain sizes. A third, who had three copies of the gene, was mentally retarded and suffered from bone deformation as well.

Reiner: “Several brain diseases, including schizophrenia, epilepsy, and autism, have been linked to faulty neuron migration, and recent research has hinted that some of these may involve variations in gene number. Our study is the first to demonstrate the effects of the duplication of a single gene in a mouse model and tie it to a new ‘copy number variation’ human disease.”

Prof. Orly Reiner’s research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Kekst Family Center for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the PW-Iris Foundation; and the PW- Jani.M Research Fund. Prof. Reiner is the incumbent of the Bernstein-Mason Chair of Neurochemistry.

For the scientific paper, please see: www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org
http://www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>