Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extra Copies of a Gene Carry Extra Risk

06.02.2009
The gene LIS1 is crucial for ensuring the proper placement of neurons in the developing brain. When it is missing, brains fail to develop their characteristic folds, resulting in defects. However, new research at the Weizmann Institute shows that having extra LIS1 genes can cause problems as well.

Is more of a good thing better? A gene known as LIS1 is crucial for ensuring the proper placement of neurons in the developing brain.

When an LIS1 gene is missing, brains fail to develop their characteristic folds; babies with lissencephaly, or “smooth brain,” are born severely mentally retarded. But new research by Prof. Orly Reiner of the Institute’s Molecular Genetics Department, which recently appeared in Nature Genetics, shows that having extra LIS1 genes can cause problems as well.

Reiner was the first to discover LIS1’s tie to lissencephaly, in 1993. Her latest study shows that LIS1 works by helping to determine polarity in the cell – how the various organelles are arranged inside the cell, as well as where it connects to neighboring cells. Neurons alter their polarity several times during development, especially when they take on an elongated shape and migrate to new locations in the brain.

But what if, rather than too little, the body has too much LIS1? One of the surprises to come out of the recent spate of post-human-genome research is the number of genes that can be repeated or deleted in an individual’s genome. Most extra copies of genes may be no more harmful than a computer backup disk, but scientists have been finding that some repeats can cause disease.

Research associate Dr. Tamar Sapir and lab technician Talia Levy, working in Reiner’s lab, developed a mouse model in which additional LIS1 protein was produced in the brain. The scientists found that the brains of these mice were a bit smaller than average. On closer inspection, they discovered a range of subtle changes in cell polarity and movement: nuclei within the proliferating zone tended to move faster, but with less control; rates of cell death were higher; and various factors in the cell became more disordered.

Reiner then asked whether their findings might apply to humans. Together with Jim Lupski and Drs. Weimin Bi and Oleg A. Shchelochkov of the Baylor College of Medicine in Houston, Texas, they searched through blood samples using a technique that matches a patient’s DNA with control DNA to identify additions or deletions in its sequence. They identified seven individuals with extra copies of either LIS1 or adjacent genes that are also involved in brain development. All suffered developmental abnormalities. Two of the patients – children with a second LIS1 gene – had previously been diagnosed with failure to thrive and delayed development, and were found to have small brain sizes. A third, who had three copies of the gene, was mentally retarded and suffered from bone deformation as well.

Reiner: “Several brain diseases, including schizophrenia, epilepsy, and autism, have been linked to faulty neuron migration, and recent research has hinted that some of these may involve variations in gene number. Our study is the first to demonstrate the effects of the duplication of a single gene in a mouse model and tie it to a new ‘copy number variation’ human disease.”

Prof. Orly Reiner’s research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Kekst Family Center for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the PW-Iris Foundation; and the PW- Jani.M Research Fund. Prof. Reiner is the incumbent of the Bernstein-Mason Chair of Neurochemistry.

For the scientific paper, please see: www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org
http://www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>