Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinct sea scorpion gets a Yale eye exam, with surprising results

11.07.2014

Poor peepers are a problem, even if you are a big, bad sea scorpion.

One minute, you're an imperious predator, scouring the shallow waters for any prey in sight. The next, thanks to a post-extinction eye exam by Yale University scientists, you're reduced to trolling for weaker, soft-bodied animals you stumble upon at night.


Sam Ciurca, a curatorial affiliate with the Department of Invertebrate Paleontology at Yale University, holds a model of a pterygotid.

Credit: Yale University

Such is the lot of the giant pterygotid eurypterid, the largest arthropod that ever lived. A new paper by Yale paleontologists, published in the journal Biology Letters, dramatically re-interprets the creature's habits, capabilities, and ecological role. The paper is titled "What big eyes you have: The ecological role of giant pterygotid eurypterids."

"We thought it was this large, swimming predator that dominated Paleozoic seas," said Ross Anderson, a Yale graduate student and lead author of the paper. "But one thing it would need is to be able to find the prey, to see it."

Pterygotids, which could grow more than two meters long, roamed shallow, shoreline basins for 35 million years. Because of the creatures' size, the long-toothed grasping claws in front of their mouth, and their forward-facing, compound eyes, scientists have long believed these sea scorpions to be fearsome predators.

But research by Richard Laub of the Buffalo Museum of Science cast doubt on the ability of pterygotids' claws to penetrate armored prey. Yale's eye study further confirms the idea that pterygotids were not top predators.

"Our analysis shows that they could not see as well as other eurypterids and may have lived in dark or cloudy water. If their claws could not penetrate the armor of contemporary fish, the shells of cephalopods, or possibly even the cuticle of other eurypterids, they may have preyed on soft-bodied, slower-moving prey," said Derek Briggs, the G. Evelyn Hutchinson Professor of Geology & Geophysics at Yale and curator of invertebrate paleontology at the Yale Peabody Museum of Natural History. Briggs co-authored the paper.

Victoria McCoy, a Yale graduate student, developed an innovative mathematical analysis method to understand the properties of the sea scorpions' eyes. Yale also used imaging technology with backscattered electrons on a scanning electron microscope to reveal the eye lenses without damaging the fossils. The team compared the results with the eyes of other extinct species during the same period, as well as modern-day species such as the horseshoe crab.

Although the data couldn't be used to determine nearsightedness or farsightedness, it revealed a basic visual acuity level for the sea scorpions, which had thousands of eye lenses. "We measured the angle between the lenses of the eye itself," Anderson said. "The smaller the angle, the better the eyesight."

Unfortunately for pterygotids, their eyesight proved less than exceptional, note the researchers. In fact, their vision worsened as they grew larger. It certainly wasn't on par with high-level arthropod predators such as mantis shrimp and dragonflies, said the scientists.

"Maybe this thing was not a big predator, after all," Anderson said. "It's possible it was more of a scavenger that hunted at night. It forces us to think about these ecosystems in a very different way."

The Yale team's vision testing methodology may prove instrumental in understanding how other species functioned, as well. "You could use it on a number of different organisms," according to Anderson. "It will be particularly useful with other arthropod eyesight examinations."

Former Yale postdoctoral fellow Maria McNamara of University College Cork also co-authored the paper. The research began as a project in a fossil preservation class Briggs taught at Yale.

Jim Shelton | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: Peabody creatures ecological lenses penetrate scorpions

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>