Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinct rodent species discovered

30.07.2009
Study published in the journal Comptes Rendus Palevol

An international team of scientists has discovered an extinct rodent species, based on fossil tooth remains found in Alborache, Valencia. Eomyops noeliae, from the Eomyidae family, represents the oldest find within this genus in the world.

The small number of fossils found has prevented the scientists from the University of Valencia (UV), who have led this research study, from being able to gain a full picture of this "new" rodent. However, they have been able to prove – on the basis of just the teeth, the only fossil remains discovered – that Eomyops noeliae was morphologically and biometrically different from other rodents of the Eomyops genus. The new species provides valuable evolutionary, biostratigraphic and paleoenvironmental information related to this rodent, which was of average size within the group.

"Until now, the Eomyops genus was made up of a group of small species and one large one, but no intermediately-sized kinds such as Eomyops noeliae had been found", Francisco Javier Ruiz-Sánchez, lead author of the study published in the French journal Comptes Rendus Palevol and a researcher in the UV's Department of Geology, tells SINC.

The palaeontologists have also confirmed the age of the find. "The fossils found in the Morteral 20A deposit in Valencia show that this is the oldest species within the genus known in the world with absolute certainty", points out Ruiz-Sánchez. According to this data, Eomyops noeliae would have lived during the Aragonese period "perhaps between the Lower and Middle Miocene (around 16 million years ago)", underscores the researcher.

The rodent's wet environment

The varied fauna of micro-mammals and the new species found in the Valencian deposit provide information about the environmental conditions in which these animals would have lived at the time. "The rodent taxa found show evidence that the environment was very wet", says Ruiz-Sánchez, even though the full study on all the fossil rodent remains, begun with this new eomyid, has still not been completed.

According to the study, the environment was "relatively thickly wooded, and the climate was wet", although other factors such as temperature have not yet been defined.

The biogeographical data also show that Eomyops noeliae lived throughout the east of the Iberian Peninsula during the Lower-Middle Miocene. This has been confirmed from the Eomyops species remains excavated from the "most recent" Morteral 22 deposit, which is very close to Morteral 20A.

Ruiz-Sánchez says the finds of this species' teeth in deposit strata separated by just a few metres show that "how this species survived in the east of the peninsula over a specific time period that is currently hard to define, but which must have gone on for several tens of thousands of years".

Reference: Ruiz-Sánchez, Francisco Javier; Lázaro Calatayud, Belén; Freudenthal, Matthijs. "Eomyops noeliae sp nov., a new Eomyidae (Mammalia, Rodentia) from the Aragonian of Spain" Comptes Rendus Palevol 8(4): 375-384 may-june 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>