Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinct Moa Rewrites New Zealand's History

19.11.2009
DNA recovered from fossilised bones of the moa, a giant extinct bird, has revealed a new geological history of New Zealand, reports a study published this week in the Proceedings of the National Academy of Sciences.

A team of scientists led by the University of Adelaide has reconstructed a history of marine barriers, mountain building and glacial cycles in New Zealand over millions of years, using the first complete genetic history of the moa.

After almost being totally submerged around 25 million years ago, the current South and North Islands were separated by a large sea until around 1.5 million years ago, researchers say.

Project leader Professor Alan Cooper from the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) says New Zealand is recognised as one of the world’s “great evolutionary laboratories” due to the absence of land mammals and the radiation of giant flightless birds such as the moa. “Yet this research is rewriting the geological history of New Zealand and shows how little we really know about it,” Professor Cooper says.

The team of Australian and New Zealand researchers sequenced DNA from hundreds of birds collected from caves and swamps, including all nine species of moa. The birds, which weighed up to 250kg, were the dominant animals in New Zealand’s pre-human environment but were quickly exterminated after the arrival of the Maori around 1280AD.

“We found that the remarkable evolutionary dispersion of the nine moa species took place in only seven million years and seems to have occurred as the Southern Alps rapidly rose up and created lots of new habitats,” Professor Cooper says. The evidence also suggests that many of New Zealand’s iconic species - including the kiwi, tuatara and kauri – evolved solely on the South Island.

“This raises the question of what was happening on the North Island during this time?” Professor Cooper says.

Lead author Dr Mike Bunce from Murdoch University extracted traces of DNA from moa bones, mummies and coprolites, which the researchers were able to use to create the first detailed evolutionary time frame for moa.

Professor Peter Kamp from Waikato University led the geological mapping that revealed the extent of the seaway separating the two islands, as well as the uplift history of the Southern Alps.

“When the seaway was first bridged by land around 1.5 million years ago, it is likely that a major interchange of species took place as also occurred between North and South America across the Panama isthmus around three million years ago,” Professor Kamp says.

Team member Dr Trevor Worthy from the University of NSW said the study was “an excellent example of how museum specimens can contribute to cutting-edge science”.

Dr Mike Bunce | Newswise Science News
Further information:
http://www.adelaide.edu

Further reports about: Australian DNA Kiwi MOA Southern Alps giant flightless birds glacial cycles kauri sequenced DNA tuatara

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>