Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression of Infrared Fluorescence Engineered in Mammals

11.05.2009
Researchers at the University of California, San Diego – led by 2008 Nobel-Prize winner Roger Tsien, PhD – have shown that bacterial proteins called phytochromes can be engineered into infrared-fluorescent proteins (IFPs). Because the wavelength of IFPs is able to penetrate tissue, these proteins are suitable for whole-body imaging in small animals.

Researchers at the University of California, San Diego – led by 2008 Nobel-Prize winner Roger Tsien, PhD – have shown that bacterial proteins called phytochromes can be engineered into infrared-fluorescent proteins (IFPs).

Because the wavelength of IFPs is able to penetrate tissue, these proteins are suitable for whole-body imaging in small animals. Their findings will be published in the May 8 edition of the journal Science.

“The development of IFPs may be important for future studies in animals – to find out how cancers develop, how infections grow or diminish in mice, or perhaps how neurons are firing in flies,” said Tsien, professor of pharmacology, chemistry and biochemistry at UC San Diego and a Howard Hughes Medical Institute investigator. Tsien was one of three scientists awarded the 2008 Nobel Prize in Chemistry for discovery of the Green Fluorescent Protein (GFP) and a series of important developments which have led to its use as a tagging tool in bioscience.

The limitation of using GFP in living mammals is that its wave lengths are not long enough to allow light to penetrate far enough to allow inner cells to glow with fluorescent light.

First author Xiaokun Shu, PhD, of the UC San Diego School of Medicine’s Department of Pharmacology and the Howard Hughes Medical Institute, coerced the phytochrome from the bacteria Deinococcus radiodurans to fluoresce – the first protein to glow in infrared and work in mouse models. A phytochrome is a photoreceptor – a pigment that plants and bacteria use to detect light – which is sensitive to light in the red and far-red region of the visible spectrum.

“IFPs express well in mammalian cells and spontaneously incorporate biliverdin, a green pigment that is present in humans and other mammals,” said Tsien. Biliverdin is the substance responsible for the yellowish-green color of a bruise as it fades, for example. Biliverdin normally has negligible fluorescence. However, Shu was able to coax the biliverdin-containing protein to fluoresce by cutting off the parts of the phytochrome that divert the energy of the light.

“We hoped that by doing so, the light’s energy wouldn’t go anywhere else but would instead go out and become fluorescent,” Shu said, adding that the protein is “moderately fluorescent, but we still have a long way to go.”

Tsien stated that, while this work is promising for future studies in animal models, he doesn’t think it will be applied directly to imaging in humans for several reasons.

“First, all fluorescent proteins derived from corals, jellyfish, and now bacteria are powerful in basic research because they are encoded by a gene,” said Tsien. “Introducing such genes into people would pose big scientific and ethical problems.”

He explained that, secondly, humans are still too thick and opaque for the infrared fluorescence to get deep inside our bodies, although scientists can now see faintly through a mouse with infrared, because mice are so much smaller.

The Tsien lab is working on a different project to develop a technique without these limitations, one that can be used for imaging in humans. His hope is that, one day, people will be able to go in for their annual check ups and know if they have cancer because tumors will light up by magnetic resonance imaging of diagnostic molecules.

But for now, Tsien, Shu and their colleagues at UC San Diego hope that the prototype they have developed can be used to make other, improved fluorescent bacterial proteins from among the huge numbers harnessed from other organisms – IFPs that can be used in important animal studies.

This technology (SD2008-303) and related technologies are available for licensing and commercial development through the UCSD Technology Transfer Office (http://invent.ucsd.edu).

Debra Kain | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>