Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive Evolution Need Not Follow Mass Extinctions

14.02.2012
Following one of Earth’s five greatest mass extinctions, tiny marine organisms called graptoloids did not begin to rapidly develop new physical traits until about 2 million years after competing species became extinct.

This discovery, based on new research, challenges the widely held assumption that a period of explosive evolution quickly follows for survivors of mass extinctions.

In the absence of competition, the common theory goes, surviving species hurry to adapt, evolving new physical attributes to take advantage of newly opened niches in the ecosystem. But that’s not what researchers found in graptoloid populations that survived a mass extinction about 445 million years ago.

“What we found is more consistent with a different theory, which says you might expect an evolutionary lag as the ecosystem reforms itself and new interspecies relationships form,” said University at Buffalo geology professor Charles E. Mitchell, who led the research.

The research provides insight on how a new mass extinction, possibly one resulting from man-made problems such as deforestation and climate change, might affect life on Earth today.

“How would it affect today’s plankton? How would it affect groups of organisms in general?” asked the paper’s lead author, David W. Bapst, a PhD candidate at the University of Chicago, who studied with Mitchell as an undergraduate.

“The general motivation behind this work is understanding how extinction and evolution of form relate to each other, and the fossil record is the only place where we can do these sort of experiments across long spans of time,” Bapst said.

The research on graptoloids is scheduled to appear the week of Feb. 13 in the online Early Edition of the Proceedings of the National Academy of Sciences.

Other team members included Peter C. Bullock and Michael J. Melchin of St. Francis Xavier University in Nova Scotia, and H. David Sheets of Canisius College in Buffalo, N.Y. The National Science Foundation and Natural Sciences and Engineering Research Council of Canada supported the study.

Graptoloids are an extinct zooplankton that lived in colonies. Because the animals evolved quickly and had a wide geographic range, their fossil record is rich — a trove of information on how species diversify.

Bapst, Mitchell and their colleagues examined two different groups of graptoloids in their study: neograptines and diplograptines. Each kind lived during the Ordovician mass extinction that began about 445 million years ago, but only neograptines survived.

Before the extinction event, diplograptine species were dominant, outnumbering neograptine species. Diplograptines also varied more in their morphology, building colonies of many different shapes.

With diplograptines gone after the Ordovician mass extinction, neograptines had a chance to recover in an environment free of competitors.

According to the popular ecological release hypothesis, a popular theory, these circumstances should have led to a burst of adaptive radiation. In other words, without competition, the neograptines should have diversified rapidly, developing new physical traits — new colonial architectures — to take advantage of ecological niches that the diplograptines once filled.

But that’s not what the researchers found.

To test the adaptive radiation idea, they analyzed the colony forms of 183 neograptine and diplograptine species that lived before, during or after the Ordovician mass extinction — a total of 9 million years of graptoloid history.

This wealth of data enabled the team to track graptoloid evolution with more precision than past studies could. What the researchers discovered looked nothing like adaptive radiation.

Almost immediately following the Ordovician mass extinction, new neograptine species proliferated, as expected. But according to the study, these new species displayed only small changes in form or morphology, not the burst of innovation the release hypothesis predicts. In fact, graptoloids had been evolving new physical traits at a more intensive pace before the extinction event.

Limited morphological innovation among neograptines continued for approximately 2 million years after the extinction, Bapst said.

The lag supports a type of evolution that argues that interactions between co-evolving species help foster diversification. Because such relationships likely take time to develop in a recovering ecosystem, an evolutionary lag of the kind the graptoloid study detected should occur in the wake of a mass extinction.

Another possible explanation is that newly appeared graptoloid species may have differed in ways outside of physical traits, a phenomenon that biologists refer to as non-adaptive radiations. A third possibility is that graptoloids may have experienced evolutionary lag due to their complex mode of growth.

Besides investigating how neograptines fared after the extinction event, the team also analyzed whether colony form alone could explain why neograptines survived the mass extinction while diplograptines disappeared. The scientists concluded that this was unlikely, suggesting a role for other factors such as possible differences in the preferred habitat of the two groups.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>