Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive Evolution Need Not Follow Mass Extinctions

14.02.2012
Following one of Earth’s five greatest mass extinctions, tiny marine organisms called graptoloids did not begin to rapidly develop new physical traits until about 2 million years after competing species became extinct.

This discovery, based on new research, challenges the widely held assumption that a period of explosive evolution quickly follows for survivors of mass extinctions.

In the absence of competition, the common theory goes, surviving species hurry to adapt, evolving new physical attributes to take advantage of newly opened niches in the ecosystem. But that’s not what researchers found in graptoloid populations that survived a mass extinction about 445 million years ago.

“What we found is more consistent with a different theory, which says you might expect an evolutionary lag as the ecosystem reforms itself and new interspecies relationships form,” said University at Buffalo geology professor Charles E. Mitchell, who led the research.

The research provides insight on how a new mass extinction, possibly one resulting from man-made problems such as deforestation and climate change, might affect life on Earth today.

“How would it affect today’s plankton? How would it affect groups of organisms in general?” asked the paper’s lead author, David W. Bapst, a PhD candidate at the University of Chicago, who studied with Mitchell as an undergraduate.

“The general motivation behind this work is understanding how extinction and evolution of form relate to each other, and the fossil record is the only place where we can do these sort of experiments across long spans of time,” Bapst said.

The research on graptoloids is scheduled to appear the week of Feb. 13 in the online Early Edition of the Proceedings of the National Academy of Sciences.

Other team members included Peter C. Bullock and Michael J. Melchin of St. Francis Xavier University in Nova Scotia, and H. David Sheets of Canisius College in Buffalo, N.Y. The National Science Foundation and Natural Sciences and Engineering Research Council of Canada supported the study.

Graptoloids are an extinct zooplankton that lived in colonies. Because the animals evolved quickly and had a wide geographic range, their fossil record is rich — a trove of information on how species diversify.

Bapst, Mitchell and their colleagues examined two different groups of graptoloids in their study: neograptines and diplograptines. Each kind lived during the Ordovician mass extinction that began about 445 million years ago, but only neograptines survived.

Before the extinction event, diplograptine species were dominant, outnumbering neograptine species. Diplograptines also varied more in their morphology, building colonies of many different shapes.

With diplograptines gone after the Ordovician mass extinction, neograptines had a chance to recover in an environment free of competitors.

According to the popular ecological release hypothesis, a popular theory, these circumstances should have led to a burst of adaptive radiation. In other words, without competition, the neograptines should have diversified rapidly, developing new physical traits — new colonial architectures — to take advantage of ecological niches that the diplograptines once filled.

But that’s not what the researchers found.

To test the adaptive radiation idea, they analyzed the colony forms of 183 neograptine and diplograptine species that lived before, during or after the Ordovician mass extinction — a total of 9 million years of graptoloid history.

This wealth of data enabled the team to track graptoloid evolution with more precision than past studies could. What the researchers discovered looked nothing like adaptive radiation.

Almost immediately following the Ordovician mass extinction, new neograptine species proliferated, as expected. But according to the study, these new species displayed only small changes in form or morphology, not the burst of innovation the release hypothesis predicts. In fact, graptoloids had been evolving new physical traits at a more intensive pace before the extinction event.

Limited morphological innovation among neograptines continued for approximately 2 million years after the extinction, Bapst said.

The lag supports a type of evolution that argues that interactions between co-evolving species help foster diversification. Because such relationships likely take time to develop in a recovering ecosystem, an evolutionary lag of the kind the graptoloid study detected should occur in the wake of a mass extinction.

Another possible explanation is that newly appeared graptoloid species may have differed in ways outside of physical traits, a phenomenon that biologists refer to as non-adaptive radiations. A third possibility is that graptoloids may have experienced evolutionary lag due to their complex mode of growth.

Besides investigating how neograptines fared after the extinction event, the team also analyzed whether colony form alone could explain why neograptines survived the mass extinction while diplograptines disappeared. The scientists concluded that this was unlikely, suggesting a role for other factors such as possible differences in the preferred habitat of the two groups.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>