Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring the roots of the problem: How a South American tree adapts to volcanic soils

24.01.2014
Low soil nitrogen, not soil phosphorus levels, stimulate cluster root adaptation in the Proteaceae Embothrium coccineum, a tree that may be key to reforestation in Patagonia

Soils of southern South America, including Patagonia, have endured a high frequency of disturbances from volcanic eruptions, earthquakes, landslides, and erosion.


Left, small seedling (ca. 5 mo–old) collected in Reserva Nacional Cerro Castillo, Chile, with its noticeable cluster roots holding soil. Right, one young cluster root; notice that they are simple cluster roots (i.e., bottle-brush-like structures).

Credit: Left by Frida Piper; right by Mabel Delgado.

In addition, massive fires in the mid-20th century were set to forests in the region in an effort to promote colonization. In 2010, another 17,000 acres of Patagonia burned, fueling an international reforestation effort.

Although the young soils of southern South America may contain high phosphorus levels, the element is tightly bound to the soil, offering limited phosphorus available to plants.

So how can plants in this area take root and access that phosphorus?

According to a recent article published in the American Journal of Botany, scientists have identified a mechanism enabling a native tree species access to this limiting nutrient. As a result, the Chilean fire bush (Proteaceae, Embothrium coccineum), a tree endemic to Chile and Argentina, could have an important role in the reforestation of Patagonia.

In the wild, E. coccineum colonizes highly disturbed land where other tree species rarely occur. Proteaceae species, common in the southern hemisphere, are known for a root structure adaptation that increases phosphorus acquisition from weathered, phosphorus-poor soils. The greater surface area of cluster roots increases root exudates of organic acids and phosphatases. These exudates enhance plant phosphorus acquisition from unavailable forms in the soil.

"I was particularly curious of the ecological role of this root adaptation," explained Frida Piper, a terrestrial ecosystem ecologist at the remote research center Centro de Investigación en Ecosistemas de la Patagonia (CIEP) in Coyhaique, Chile. Piper designed a field study to better understand the role of cluster roots of E. coccineum across a natural precipitation and phosphorus gradient in its native habitat. How does the production of cluster roots in this Proteaceae enable successful establishment in young volcanic soils of South America?

Small and large E. coccineum seedlings and topsoil were collected at four sites in the Aysén Region of Patagonia, Chile, in 2010-2013. Seedlings were assessed for number and biomass of cluster roots, plant size and growth, and foliar phosphorus levels. Soil samples were analyzed for pH, total nitrogen (N), available phosphorus (P) and organic matter. Based on biomass and chemical analyses, four dominant factors were identified: soil P, soil N, foliar P, and seedling age. A suite of generalized linear mixed–effect model regressions were fitted to the data.

In contrast to previous studies of Proteaceae in Australia and South Africa, the best-fit model for predicting the number of cluster roots in this study did not contain any soil P factor; foliar P levels correlated with cluster root formation. The number of cluster roots was significantly higher in large seedlings, yet biomass investment in cluster roots was greater for small seedlings.

Piper found that cluster roots mediate a decoupling of foliar P from soil P concentrations for small seedlings. This enabled small seedlings to maintain adequate foliar P levels, critical to their ontogenetic growth. The relative investment in cluster roots was directly linked to both low soil N and leaf P. Seedlings from sites with lower total soil N had more cluster roots, regardless of other soil characteristics. The cluster root adaptation is very sensitive and highly expressed at low total soil N levels but rapidly disappears as soil N levels increase. The investment in cluster roots declines after seedling establishment, most likely as aerial growth is increasingly important for light competition.

Embothrium coccineum may have an important role in reforestation of Patagonia as an early successional species. Cluster roots have been identified in other plant species, including some agronomic crops in the Cucurbitaceae. "The biotechnology potential of these traits is being studied now," Piper says. Piper's research clarifying the mechanism of seedling establishment success for E. coccineum in conditions with limited availability of N and P may lead to advantageous root adaptation in other plants.

Piper is already exploring further research to understand how E. coccineum benefits neighbors by providing increased nutrient availability from root exudates or leaf litter decomposition. As a result of this study, nitrogen status of soil and plants, in addition to phosphorus, will always be included in Proteaceae studies by Piper. "Proteaceae can do something no other plant can do," Piper explains. "They are accessing nutrients that no other plants can access."

Piper, Frida I., Gabriela Baez, Alejandra Zúñiga-Feest, and Alex Fajardo. 2013. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum. American Journal of Botany 100:2328-2338. doi:10.3732/ajb.1300163

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/100/12/2328.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>