Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exploding dinosaur hypothesis implodes

Exploding carcasses through putrefaction gases – this is how science explained the mysterious bone arrangements in almost fully preserved dinosaur skeletons for decades.
Now a Swiss-German research team has proved that these carcasses sank to the seabed and did not explode. The sedimentologists and paleontologists from the universities of Zurich and Basel thus dispel the myth of exploding marine reptiles.

The pregnant ichthyosaur female from Holzmaden (Germany) that perished 182 million years ago puzzled researchers for quite some time: The skeleton of the extinct marine reptile is almost immaculately preserved and the fossilized bones of the mother animal lie largely in their anatomical position. The bones of the ichthyosaur embryos, however, are a different story: For the most part, they lie scattered outside the body of the mother. Such peculiar bone arrangements are repeatedly found in ichthyosaur skeletons.

Not exploded: Ichthyosaur female from Holzmaden with scattered embryos outside of the body of the mother. Picture: UZH

According to the broadly accepted scientific doctrine, this is the result of exploding carcasses: Putrefaction gases produced during the decomposition process cause the carcass to swell and burst. Through such explosions, even the bones of embryos can supposedly be ejected out of the body. Based on an elaborate series of measurements and an analysis of the physical-biological parameters, however, a research team of sedimentologists, paleontologists and forensic scientists has now managed to dispel the myth of exploding dinosaur carcasses.

Putrefaction gas pressure not high enough
In order to gauge the pressure of the particular gases that can actually develop inside a putrefying ichthyosaur, the researchers sought comparative models and found one in human corpses: Humans and many ichthyosaur species have a similar size range. Consequently, the formation of similar amounts of putrefaction gas can be expected during decomposition. At the Institute of Forensic Medicine in Frankfurt, Germany, a manometer was inserted into the abdominal cavity through the umbilicus in one hundred corpses.The putrefaction gas pressures measured were only 0.035 bar.

In the case of the ichthyosaur carcasses that came to rest below 50 to 150 meters of water, however, putrefaction gas pressures of over five to 15 bar would have been necessary to cause an explosion. According to Zurich paleontologist Christian Klug, gas pressures of this dimension and therefore actual explosions are impossible: “Large vertebrates that decompose cannot act as natural explosive charges.” And he is convinced: “Our results can be extended to lung-breathing vertebrates in general.”

What actually happened 182 million years ago
According to the researchers, the fate of ichthyosaur carcasses can be reconstructed as follows: Normally, the bodies sank to the seabed immediately post mortem. In very deep, hospitable waters, they were broken down completely through putrefaction,scavengers, bone-destroying organisms and dissolving processes.

In shallower water (up to 50 meters) and a temperature of over four degrees Celsius, however, the corpses often rose back to the surface on account of the putrefaction gases accumulating inside the body. At the surface, exposed to the waves and scavengers, they decomposed within anything from a few days to weeks and the bones were scattered over a wide area on the seabed as they sank.

Ichthyosaur skeletons only remained preserved more or less in their anatomical position under very special circumstances: A lack of oxygen, medium water depths and insignificant bottom water currents. Because only then were the putrefaction gases compressed strongly enough through the high water pressure and dissolved in the bodily fluids, and the carcasses not completely broken down due to a lack of scavengers. The carcass of the ichthyosaur female from Holzmaden thus sank to the bottom of the sea, which was up to 150 meters deep, where it decomposed. In doing so, the decomposed embryo skeletons were transported out of the body of the mother by minor currents at the seabed.

Achim G. Reisdorf, Roman Bux, Daniel Wyler, Mark Benecke, Christian Klug, Michael W. Maisch, Peter Fornaro, Andreas Wetzel (2012): Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Michael Wuttke & Achim G. Reisdorf (eds): Taphonomic processes in terrestrial and marine environments. – Palaeobiodiversity and Palaeoenvironments, 92(1): 67-81. DOI: 10.1007/s12549-011-0067-z
Christian Klug
Paleontological Institute and Museum
University of Zurich
Tel.: +41 76 472 74 34
Achim G. Reisdorf
Geologisch-Paläontologisches Institut
University of Basel
Tel.: +41 61 267 36 11

Nathalie Huber | idw
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>