Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding dinosaur hypothesis implodes

28.03.2012
Exploding carcasses through putrefaction gases – this is how science explained the mysterious bone arrangements in almost fully preserved dinosaur skeletons for decades.
Now a Swiss-German research team has proved that these carcasses sank to the seabed and did not explode. The sedimentologists and paleontologists from the universities of Zurich and Basel thus dispel the myth of exploding marine reptiles.

The pregnant ichthyosaur female from Holzmaden (Germany) that perished 182 million years ago puzzled researchers for quite some time: The skeleton of the extinct marine reptile is almost immaculately preserved and the fossilized bones of the mother animal lie largely in their anatomical position. The bones of the ichthyosaur embryos, however, are a different story: For the most part, they lie scattered outside the body of the mother. Such peculiar bone arrangements are repeatedly found in ichthyosaur skeletons.

Not exploded: Ichthyosaur female from Holzmaden with scattered embryos outside of the body of the mother. Picture: UZH

According to the broadly accepted scientific doctrine, this is the result of exploding carcasses: Putrefaction gases produced during the decomposition process cause the carcass to swell and burst. Through such explosions, even the bones of embryos can supposedly be ejected out of the body. Based on an elaborate series of measurements and an analysis of the physical-biological parameters, however, a research team of sedimentologists, paleontologists and forensic scientists has now managed to dispel the myth of exploding dinosaur carcasses.

Putrefaction gas pressure not high enough
In order to gauge the pressure of the particular gases that can actually develop inside a putrefying ichthyosaur, the researchers sought comparative models and found one in human corpses: Humans and many ichthyosaur species have a similar size range. Consequently, the formation of similar amounts of putrefaction gas can be expected during decomposition. At the Institute of Forensic Medicine in Frankfurt, Germany, a manometer was inserted into the abdominal cavity through the umbilicus in one hundred corpses.The putrefaction gas pressures measured were only 0.035 bar.

In the case of the ichthyosaur carcasses that came to rest below 50 to 150 meters of water, however, putrefaction gas pressures of over five to 15 bar would have been necessary to cause an explosion. According to Zurich paleontologist Christian Klug, gas pressures of this dimension and therefore actual explosions are impossible: “Large vertebrates that decompose cannot act as natural explosive charges.” And he is convinced: “Our results can be extended to lung-breathing vertebrates in general.”

What actually happened 182 million years ago
According to the researchers, the fate of ichthyosaur carcasses can be reconstructed as follows: Normally, the bodies sank to the seabed immediately post mortem. In very deep, hospitable waters, they were broken down completely through putrefaction,scavengers, bone-destroying organisms and dissolving processes.

In shallower water (up to 50 meters) and a temperature of over four degrees Celsius, however, the corpses often rose back to the surface on account of the putrefaction gases accumulating inside the body. At the surface, exposed to the waves and scavengers, they decomposed within anything from a few days to weeks and the bones were scattered over a wide area on the seabed as they sank.

Ichthyosaur skeletons only remained preserved more or less in their anatomical position under very special circumstances: A lack of oxygen, medium water depths and insignificant bottom water currents. Because only then were the putrefaction gases compressed strongly enough through the high water pressure and dissolved in the bodily fluids, and the carcasses not completely broken down due to a lack of scavengers. The carcass of the ichthyosaur female from Holzmaden thus sank to the bottom of the sea, which was up to 150 meters deep, where it decomposed. In doing so, the decomposed embryo skeletons were transported out of the body of the mother by minor currents at the seabed.

Literature:
Achim G. Reisdorf, Roman Bux, Daniel Wyler, Mark Benecke, Christian Klug, Michael W. Maisch, Peter Fornaro, Andreas Wetzel (2012): Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Michael Wuttke & Achim G. Reisdorf (eds): Taphonomic processes in terrestrial and marine environments. – Palaeobiodiversity and Palaeoenvironments, 92(1): 67-81. DOI: 10.1007/s12549-011-0067-z
Contact:
Christian Klug
Paleontological Institute and Museum
University of Zurich
Tel.: +41 76 472 74 34
Email: chklug@pim.uzh.ch
Achim G. Reisdorf
Geologisch-Paläontologisches Institut
University of Basel
Tel.: +41 61 267 36 11
Email: achim.reisdorf@unibas.ch

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>