Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding dinosaur hypothesis implodes

28.03.2012
Exploding carcasses through putrefaction gases – this is how science explained the mysterious bone arrangements in almost fully preserved dinosaur skeletons for decades.
Now a Swiss-German research team has proved that these carcasses sank to the seabed and did not explode. The sedimentologists and paleontologists from the universities of Zurich and Basel thus dispel the myth of exploding marine reptiles.

The pregnant ichthyosaur female from Holzmaden (Germany) that perished 182 million years ago puzzled researchers for quite some time: The skeleton of the extinct marine reptile is almost immaculately preserved and the fossilized bones of the mother animal lie largely in their anatomical position. The bones of the ichthyosaur embryos, however, are a different story: For the most part, they lie scattered outside the body of the mother. Such peculiar bone arrangements are repeatedly found in ichthyosaur skeletons.

Not exploded: Ichthyosaur female from Holzmaden with scattered embryos outside of the body of the mother. Picture: UZH

According to the broadly accepted scientific doctrine, this is the result of exploding carcasses: Putrefaction gases produced during the decomposition process cause the carcass to swell and burst. Through such explosions, even the bones of embryos can supposedly be ejected out of the body. Based on an elaborate series of measurements and an analysis of the physical-biological parameters, however, a research team of sedimentologists, paleontologists and forensic scientists has now managed to dispel the myth of exploding dinosaur carcasses.

Putrefaction gas pressure not high enough
In order to gauge the pressure of the particular gases that can actually develop inside a putrefying ichthyosaur, the researchers sought comparative models and found one in human corpses: Humans and many ichthyosaur species have a similar size range. Consequently, the formation of similar amounts of putrefaction gas can be expected during decomposition. At the Institute of Forensic Medicine in Frankfurt, Germany, a manometer was inserted into the abdominal cavity through the umbilicus in one hundred corpses.The putrefaction gas pressures measured were only 0.035 bar.

In the case of the ichthyosaur carcasses that came to rest below 50 to 150 meters of water, however, putrefaction gas pressures of over five to 15 bar would have been necessary to cause an explosion. According to Zurich paleontologist Christian Klug, gas pressures of this dimension and therefore actual explosions are impossible: “Large vertebrates that decompose cannot act as natural explosive charges.” And he is convinced: “Our results can be extended to lung-breathing vertebrates in general.”

What actually happened 182 million years ago
According to the researchers, the fate of ichthyosaur carcasses can be reconstructed as follows: Normally, the bodies sank to the seabed immediately post mortem. In very deep, hospitable waters, they were broken down completely through putrefaction,scavengers, bone-destroying organisms and dissolving processes.

In shallower water (up to 50 meters) and a temperature of over four degrees Celsius, however, the corpses often rose back to the surface on account of the putrefaction gases accumulating inside the body. At the surface, exposed to the waves and scavengers, they decomposed within anything from a few days to weeks and the bones were scattered over a wide area on the seabed as they sank.

Ichthyosaur skeletons only remained preserved more or less in their anatomical position under very special circumstances: A lack of oxygen, medium water depths and insignificant bottom water currents. Because only then were the putrefaction gases compressed strongly enough through the high water pressure and dissolved in the bodily fluids, and the carcasses not completely broken down due to a lack of scavengers. The carcass of the ichthyosaur female from Holzmaden thus sank to the bottom of the sea, which was up to 150 meters deep, where it decomposed. In doing so, the decomposed embryo skeletons were transported out of the body of the mother by minor currents at the seabed.

Literature:
Achim G. Reisdorf, Roman Bux, Daniel Wyler, Mark Benecke, Christian Klug, Michael W. Maisch, Peter Fornaro, Andreas Wetzel (2012): Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Michael Wuttke & Achim G. Reisdorf (eds): Taphonomic processes in terrestrial and marine environments. – Palaeobiodiversity and Palaeoenvironments, 92(1): 67-81. DOI: 10.1007/s12549-011-0067-z
Contact:
Christian Klug
Paleontological Institute and Museum
University of Zurich
Tel.: +41 76 472 74 34
Email: chklug@pim.uzh.ch
Achim G. Reisdorf
Geologisch-Paläontologisches Institut
University of Basel
Tel.: +41 61 267 36 11
Email: achim.reisdorf@unibas.ch

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch/

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>