Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding Chromosomes Fuel Research About Evolution

25.08.2008
Research into single-celled, aquatic algae called dinoflagellates is showing that these and related organisms may have evolved more than one way to tightly pack their DNA into chromosomes

Human cells somehow squeeze two meters of double-stranded DNA into the space of a typical chromosome, a package 10,000 times smaller than the volume of genetic material it contains.

“It is like compacting your entire wardrobe into a shoebox,” said Riccardo Levi-Setti, Professor Emeritus in Physics at the University of Chicago.

Now research into single-celled, aquatic algae called dinoflagellates is showing that these and related organisms may have evolved more than one way to achieve this feat of genetic packing. Even so, the evolution of chromosomes in dinoflagellates, humans and other mammals seem to share a common biochemical basis, according to a team Levi-Setti led. The team’s findings appear online, in Science Direct’s list of papers in press (http://dx.doi.org/10.1016/j.ejcb.2008.06.002) in the European Journal of Cell Biology.

Packing the whole length of DNA into tiny chromosomes is problematic because DNA carries a negative charge that, unless neutralized, prevents any attempt at folding and coiling due to electrostatic repulsion. The larger the quantity of DNA, the more negative charge must be neutralized along its length.

“Dinoflagellates have much more nuclear DNA than humans,” said Texas A&M biologist Peter Rizzo, who collaborated on the research with Levi-Setti and Konstantin Gavrilov, a Visiting Research Scientist in the Enrico Fermi Institute at the University of Chicago.

Every bit of DNA must be properly duplicated and divided to facilitate reproduction and growth. In humans and mammals, proteins called histones partially neutralize the DNA’s negative charge. When histones wrap themselves in DNA, they become nucleosomes.

Dinoflagellates are stuffed at the core with tightly compacted chromosomes, yet these organisms contain neither histones nor nucleosomes. “What takes care of neutralizing DNA, to allow chromosomes to condense?” Levi-Setti asked. “Most biology books do not tell you.”

Other scientists had already identified positively charged atoms called cations as neutralizing factors. They found that dinoflagellate chromosomes explode upon the removal of calcium and magnesium cations.

Levi-Setti has produced the first images of the distribution of these cations in dinoflagellate chromosomes. These images verify that cations, mainly of calcium and magnesium, neutralize DNA’s enormous negative charge, and further suggest a critical role in folding the protein as well.

The finding raises questions about the evolution of chromosomes, Rizzo said. “Did dinoflagellates once have histones and then lost them? Or did dinoflagellates never have histones and just ‘figured out’ a different way to fold large amounts of DNA into chromosomes?” Rizzo asked.

The images were produced using a high-resolution scanning ion microprobe, an instrument that Levi-Setti developed in the 1980s jointly with Hughes Research Laboratories in Malibu, Calif. For the last 15 years, Levi-Setti has collaborated with associates of pioneering chromosome researcher Janet Rowley, the Blum-Riese Distinguished Service Professor in Medicine, Molecular Genetics & Cell Biology and Human Genetics at the University of Chicago.

In 2001, the collaboration demonstrated that cations play an important role in compacting mammalian DNA and helping chromosomes maintain their structure. “Chromosomes would fall apart when calcium and magnesium were removed,” Levi-Setti said.

Wondering if there could be a fundamental evolutionary process at work, Levi-Setti extended his research to the fruit fly. Like mammals, fruit flies belong to the pantheon of eukaryotes. In contrast to prokaryotes like bacteria, eukaryotes pack their genetic material in a cellular nucleus. Prokaryotes lack a nucleus.

“Cations play a very important role in the folding and charge neutralization of DNA in all eukaryotes, but more so in dinoflagellates,” Rizzo said. “I find it truly amazing that in all other eukaryotes, histones help in this charge neutralization, and dinoflagellates constitute the only exception to this nearly universal rule. It looks like this may have been the first and very efficient step toward the goal of neutralizing DNA, long before histones came into play.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>