Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding Chromosomes Fuel Research About Evolution

25.08.2008
Research into single-celled, aquatic algae called dinoflagellates is showing that these and related organisms may have evolved more than one way to tightly pack their DNA into chromosomes

Human cells somehow squeeze two meters of double-stranded DNA into the space of a typical chromosome, a package 10,000 times smaller than the volume of genetic material it contains.

“It is like compacting your entire wardrobe into a shoebox,” said Riccardo Levi-Setti, Professor Emeritus in Physics at the University of Chicago.

Now research into single-celled, aquatic algae called dinoflagellates is showing that these and related organisms may have evolved more than one way to achieve this feat of genetic packing. Even so, the evolution of chromosomes in dinoflagellates, humans and other mammals seem to share a common biochemical basis, according to a team Levi-Setti led. The team’s findings appear online, in Science Direct’s list of papers in press (http://dx.doi.org/10.1016/j.ejcb.2008.06.002) in the European Journal of Cell Biology.

Packing the whole length of DNA into tiny chromosomes is problematic because DNA carries a negative charge that, unless neutralized, prevents any attempt at folding and coiling due to electrostatic repulsion. The larger the quantity of DNA, the more negative charge must be neutralized along its length.

“Dinoflagellates have much more nuclear DNA than humans,” said Texas A&M biologist Peter Rizzo, who collaborated on the research with Levi-Setti and Konstantin Gavrilov, a Visiting Research Scientist in the Enrico Fermi Institute at the University of Chicago.

Every bit of DNA must be properly duplicated and divided to facilitate reproduction and growth. In humans and mammals, proteins called histones partially neutralize the DNA’s negative charge. When histones wrap themselves in DNA, they become nucleosomes.

Dinoflagellates are stuffed at the core with tightly compacted chromosomes, yet these organisms contain neither histones nor nucleosomes. “What takes care of neutralizing DNA, to allow chromosomes to condense?” Levi-Setti asked. “Most biology books do not tell you.”

Other scientists had already identified positively charged atoms called cations as neutralizing factors. They found that dinoflagellate chromosomes explode upon the removal of calcium and magnesium cations.

Levi-Setti has produced the first images of the distribution of these cations in dinoflagellate chromosomes. These images verify that cations, mainly of calcium and magnesium, neutralize DNA’s enormous negative charge, and further suggest a critical role in folding the protein as well.

The finding raises questions about the evolution of chromosomes, Rizzo said. “Did dinoflagellates once have histones and then lost them? Or did dinoflagellates never have histones and just ‘figured out’ a different way to fold large amounts of DNA into chromosomes?” Rizzo asked.

The images were produced using a high-resolution scanning ion microprobe, an instrument that Levi-Setti developed in the 1980s jointly with Hughes Research Laboratories in Malibu, Calif. For the last 15 years, Levi-Setti has collaborated with associates of pioneering chromosome researcher Janet Rowley, the Blum-Riese Distinguished Service Professor in Medicine, Molecular Genetics & Cell Biology and Human Genetics at the University of Chicago.

In 2001, the collaboration demonstrated that cations play an important role in compacting mammalian DNA and helping chromosomes maintain their structure. “Chromosomes would fall apart when calcium and magnesium were removed,” Levi-Setti said.

Wondering if there could be a fundamental evolutionary process at work, Levi-Setti extended his research to the fruit fly. Like mammals, fruit flies belong to the pantheon of eukaryotes. In contrast to prokaryotes like bacteria, eukaryotes pack their genetic material in a cellular nucleus. Prokaryotes lack a nucleus.

“Cations play a very important role in the folding and charge neutralization of DNA in all eukaryotes, but more so in dinoflagellates,” Rizzo said. “I find it truly amazing that in all other eukaryotes, histones help in this charge neutralization, and dinoflagellates constitute the only exception to this nearly universal rule. It looks like this may have been the first and very efficient step toward the goal of neutralizing DNA, long before histones came into play.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>