Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward an explanation for Crohn's disease?

13.07.2009
An innovative study at the Research Institute of the MUHC has brought us closer to an explanation for Crohn's disease

Twenty-five per cent of Crohn's disease patients have a mutation in what is called the NOD2 gene, but it is not precisely known how this mutation influences the disease.

The latest study by Dr. Marcel Behr, of the Research Institute of the MUHC and McGill University, has provided new insight into how this might occur. The study will be published on July 9th in the Journal of Experimental Medicine.

When the NOD2 gene functions normally, it codes for a receptor that will recognize invading bacteria and then trigger the immune response. This study demonstrates that the NOD2 receptor preferentially recognizes a peptide called N-glycolyl-MDP, which is only found in a specific family of bacteria called mycobacteria. When mycobacteria invade the human body, they cause an immediate and very strong immune response via the NOD2 receptor.

... more about:
»McGill »Medicine »NOD2 »immune response

"Now that we have a better understanding of the normal role of NOD2, we think that a mutation in this gene prevents mycobacteria from being properly recognized by the immune system," explained Dr. Behr. "If mycobacteria are not recognized, the body cannot effectively fight them off and then becomes persistently infected."

Researchers were already aware of the relationship between mycobacteria and Crohn's disease, but they did not know whether the presence of bacteria was a cause or a consequence of the disease. This new discovery associates the predisposition for Crohn's disease with both the NOD2 mutation and the presence of mycobacteria, but researchers must still determine the precise combination of these factors to understand how the disease develops.

More research is required to establish a complete explanation. From this, it is expected that new therapeutic approaches that fight the cause of Crohn's disease may be developed

Dr. Marcel Behr

Dr. Marcel Behr is a researcher in the Infection and Immunity Axis at the Research Institute of the MUHC and an Associate Professor of Medicine and William Dawson Scholar of McGill University.

Funding

This study was funded by a grant from the Canadian Institutes of Health Research (CIHR). The salaries of some researchers were provided by the Fonds de la recherche en santé du Québec.

Partners

This article was co-authored by François Coulombe, Maziar Divanghi, Frédéric Veyrier, Louis de Léséleuc, Dr. Michael B. Reed and Dr Marcel Behr from the Research Institute of the MUHC; James L. Gleason of McGill University; and Yibin Yang, Michelle A. Kelliher, Amit K. Pandey, and Christopher M. Sassetti of the University of Massachusetts Medical School.

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

Further reports about: McGill Medicine NOD2 immune response

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>