Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts from CNIO discover shining cells responsible for developing tumors

30.09.2014

This finding will help to track the origin of chemical resistance and to launch personalized medicine by means of developing novel therapies against these cancer stem cells

Tumours are mosaics of cells that are morphologically and molecularly very different. In this cellular heterogeneity, it is calculated that only 1-2% of the tumour mass is made up of cancer stem cells, which over the past years have been suggested to be responsible for the origin of cancer and for the resistance to conventional chemical therapies.


Researchers Bruno Sainz and Irene Miranda show the image of a tumor stem cell containing green-colored fluorescent vesicles.

Credit: CNIO

This small percentage of cancer stem cells in a solid tumour makes it difficult to isolate and analyse them, as well as to study the origin of drug resistance.

Researchers from the Spanish National Cancer Research Centre (CNIO) have discovered and characterised a new specific marker for cancer stem cells: riboflavin, or vitamin B2, a pigment that emits green fluorescence as a result of its accumulation inside intracellular vesicles. This light emission property, acts to track, isolate, and later purify it, without the need for antibodies or other more costly and complex techniques.

Results from the research, headed by scientists Irene Miranda, Bruno Sainz and Christopher Heeschen, are published today in the journal Nature Methods.

"The discovery of this new marker is a breakthrough, as it can select for tumour stem cells, which are the most invasive and chemical-resistant cancer cells. Autofluorescence allows these cells to be tracked in an easy, simple and inexpensive way, as well as to study the origin of the tumours' chemical resistance," states Irene Miranda, the article's first author.

"Normally, we only see the leaves of the tree represented by tumours, but we cannot make out the roots [the cancer stem cells], which are the true responsible parties for the progression and growth of tumours," illustrates Miranda.

Cells shining, thanks to a vitamin

The discovery −which was carried out in several types of tumours, including samples from patients with pancreas, liver, colon and lung cancer− raises a question: why do tumour stem cells accumulate vitamin B2?

In the article, researchers show that this is due to an increase in ABCG2, the protein responsible for the transport of vitamin B2 into intracellular vesicles, conferring luminosity to the cells. The factors behind this phenomenon are yet to be determined.

Despite unknowns regarding its nature, autofluorescence could help to launch future approaches in personalised medicine and to develop more effective anticancer treatments. "We will now be able to isolate autofluorescent cells from a biopsy and to test their sensitivity in a panel of experimental or marketed drugs," affirm Sainz and Heeschen. "In this way, we want to accelerate the identification of new drugs or their use in combination, in order to specifically destroy the patient´s cancer stem cells," says Sainz.

###

The study was funded by the European Union, the National Institute of Health Carlos III, the Spanish Ministry of Economy and Competitiveness and the "la Caixa" Foundation.

Reference article: Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Irene Miranda-Lorenzo, Jorge Dorado, Enza Lonardo, Sonia Alcala, Alicia G Serrano, Jenifer Clausell-Tormos, Michele Cioffi, Diego Megias, Sladjana Zagorac, Anamaria Balic, Manuel Hidalgo, Mert Erkan, Joerg Kleeff, Aldo Scarpa, Bruno Sainz, Jr & Christopher Heeschen. Nature Methods (2014). doi: 10.1038/nmeth.3112

Nuria Noriega | Eurek Alert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>