Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experimental treatments for cocaine addiction may prevent relapse

Doctors have used the drug disulfiram to help patients stay sober for several decades. It interferes with the body's ability to metabolize alcohol, giving a fierce hangover to someone who consumes even a small amount of alcohol.

More recently, disulfiram was shown to be effective in treating cocaine addiction as well, even though alcohol and cocaine affect the nervous system in different ways.

Now, researchers at Emory University School of Medicine have identified how disulfiram may exert its effects, and have shown that a newer drug with fewer side effects works by the same mechanism.

The results are published online this week by the journal Neuropsychopharmacology. Research assistant professor Jason Schroeder, PhD, and graduate student Debra Cooper are co-first authors of the paper, and the research also involved collaborations with P. Michael Iuvone, PhD, director of research at the Emory Eye Center, Gaylen Edwards, DVM, PhD, head of the department of physiology and pharmacology at the University of Georgia's College of Veterinary Medicine, and Philip Holmes, PhD, professor of psychology at the University of Georgia.

"Disulfiram has several effects on the body: it interferes with alcohol metabolism, but it inhibits several other enzymes by sequestering copper, and can also damage the liver," says senior author David Weinshenker, PhD, associate professor of human genetics at Emory University School of Medicine. "We wanted to figure out how disulfiram was working so we could come up with safer and potentially more effective treatments."

In treating cocaine addiction, there are several challenges: not only getting people to stop taking the drug, but also preventing relapse. Cocaine boosts the levels of several neurotransmitters, including dopamine and norepinephrine, at the junctions between nerve cells by blocking the machinery the brain uses to remove them.

Under normal conditions, dopamine is important for the sensation of pleasure produced by natural rewards such as food or sex, Weinshenker says. Cocaine "hijacks" the dopamine system, which plays a large role in addiction. Similarly, norepinephrine has a role in attention and arousal, but its overactivation can trigger stress responses and relapse, he says.

Weinshenker's team showed that disulfiram prevents rats from seeking cocaine after a break, a model for addicts tempted to relapse. At the same time, it doesn't stop them from taking cocaine when first exposed to it, or from enjoying their food.

Disulfiram appears to work by inhibiting dopamine beta-hydroxylase, an enzyme required for the production of norepinephrine. A dose of disulfiram that lowers the levels of norepinephrine in the brain by about 40 percent is effective, while doses that do not reduce norepinephrine have no effect on relapse-like behavior in rats.

To confirm that the beneficial effects of disulfiram were because of dopamine beta-hydroxylase inhibition, the researchers turned to a drug called nepicastat, which was originally developed for the treatment of congestive heart failure in the 1990s.

"Nepicastat is a selective dopamine beta-hydroxylase inhibitor that does not sequester copper or impair a host of other enzymes like disulfiram," Weinshenker says. "We reasoned that if disulfiram is really working through dopamine beta-hydroxylase, then nepicastat might be a better alternative."

Researchers at the University of Texas Medical Branch at Galveston have recently completed a Phase I safety trial studying nepicastat for the treatment of cocaine addiction in human subjects.

Weinshenker is co-inventor on a patent on the use of dopamine beta-hydroxylase inhibitors for the treatment of cocaine dependence, and could benefit from their commercialization. This has been reviewed by Emory University's Conflict of Interest Committee, and a management plan is in place.

The research was supported by the National Institute of Drug Abuse and the National Eye Center.


J.P. Schroeder et al. Disulfiram Attenuates Drug-Primed Reinstatement of Cocaine Seeking via Inhibition of Dopamine â-Hydroxylase.

Neuropsychopharmacology, 35, page numbers TK (2010).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: - @emoryhealthsci (Twitter) -

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>