Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental treatment protects monkeys from lethal Ebola virus post-exposure

01.06.2010
Scientists using tiny particles of genetic material to interfere in the replication process of the deadly Ebola virus have successfully prevented monkeys exposed to that virus from dying of hemorrhagic fever. The proof-of-concept study, published in this week's issue of The Lancet, suggests that such protection also should be possible in humans.

"Over the past decade, we have evaluated numerous therapeutic approaches for the treatment of lethal viruses, such as Ebola," said co-author Dr. Lisa E. Hensley of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). "None of them have conferred complete protection to Ebola virus-infected primates—until now."

Using particles called small interfering RNAs (siRNAs), the authors targeted a protein (called the L protein) that is essential for Ebola virus replication. RNA inhibitors, as they are commonly called, are based on a natural gene silencing mechanism used by all cells, and RNAi therapeutics rely on a delivery technology to be effective.

Lipid nanoparticles (LNPs) are the most widely used siRNA delivery approaches. In this study, the research team used a proprietary technology called SNALP, or stable nucleic acid-lipid particles, to deliver the therapeutics to disease sites in animal models infected with the Zaire strain of Ebola virus (ZEBOV).

A group of three rhesus macaques was given anti-ZEBOV siRNAs intravenously, 30 minutes after exposure to the virus, and again on days 1, 3, and 5. A second group of four macaques was given the treatment after 30 minutes, and on days 1, 2, 3, 4, 5, and 6, after challenge with ZEBOV.

Two of the three animals in the first group (which received four post-exposure treatments) were protected from lethal ZEBOV infection and survived. All four of the monkeys given seven post-exposure treatments were protected. The treatment regimen in the second study was well tolerated, with minor changes in liver enzymes that might have been related to viral infection.

The study represents the first demonstration of complete protection against a lethal human infectious disease in nonhuman primates using RNAi, according to lead author Dr. Thomas W. Geisbert of the Boston University School of Medicine.

"We believe this work justifies the immediate development of Ebola SNALP as a countermeasure to treat Ebola infected patients, either in outbreaks or accidental laboratory exposures," he said.

Ebola virus causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol (although more commonly spread through blood and bodily fluids of infected patients), is of concern both as a global health threat and a potential agent of biological warfare or terrorism.

Currently there are no available vaccines or therapies, so researchers working with Ebola virus must do so in maximum containment (Biosafety Level 4) laboratories. In these specially designed laboratories, investigators wear positive pressure "space suits" and breathe filtered air as they work, and all laboratory waste streams are sterilized.

The SNALP-RNAi therapeutic used in the study was developed by Tekmira Pharmaceuticals Corporation of Vancouver, BC. Previous research showed that these siRNAs completely protected guinea pigs when administered shortly after a lethal dose of ZEBOV was administered. While rodent studies are useful for screening prospective medical countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models.

Further studies in monkeys would be necessary to refine dosing, toxicology and other issued before the treatment could be licensed for human use.

"The significance of this report goes beyond the protection against Ebola virus," said COL John P. Skvorak, commander of USAMRIID. "It also represents the potential for this concept to be applied to other viral infections."

The study was a collaborative effort between USAMRIID, Boston University and Tekmira, and was partly funded by the Defense Threat Reduction Agency's Transformational Medical Technologies Initiative.

USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Department of Defense Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute conducts basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. While USAMRIID's primary mission is focused on the military, its research often has applications that benefit society as a whole. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit www.usamriid.army.mil.

Reference: Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Thomas W. Geisbert, Amy C. H. Lee, Marjorie Robbins, Joan B. Geisbert, Anna N. Honko, Vandana Sood, Joshua C. Johnson, Susan de Jong, Iran Tavakoli, Adam Judge, Lisa E. Hensley, Ian MacLachlan. The Lancet: 29 May 2010; 375: 1896-190

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>