Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental treatment protects monkeys from lethal Ebola virus post-exposure

01.06.2010
Scientists using tiny particles of genetic material to interfere in the replication process of the deadly Ebola virus have successfully prevented monkeys exposed to that virus from dying of hemorrhagic fever. The proof-of-concept study, published in this week's issue of The Lancet, suggests that such protection also should be possible in humans.

"Over the past decade, we have evaluated numerous therapeutic approaches for the treatment of lethal viruses, such as Ebola," said co-author Dr. Lisa E. Hensley of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). "None of them have conferred complete protection to Ebola virus-infected primates—until now."

Using particles called small interfering RNAs (siRNAs), the authors targeted a protein (called the L protein) that is essential for Ebola virus replication. RNA inhibitors, as they are commonly called, are based on a natural gene silencing mechanism used by all cells, and RNAi therapeutics rely on a delivery technology to be effective.

Lipid nanoparticles (LNPs) are the most widely used siRNA delivery approaches. In this study, the research team used a proprietary technology called SNALP, or stable nucleic acid-lipid particles, to deliver the therapeutics to disease sites in animal models infected with the Zaire strain of Ebola virus (ZEBOV).

A group of three rhesus macaques was given anti-ZEBOV siRNAs intravenously, 30 minutes after exposure to the virus, and again on days 1, 3, and 5. A second group of four macaques was given the treatment after 30 minutes, and on days 1, 2, 3, 4, 5, and 6, after challenge with ZEBOV.

Two of the three animals in the first group (which received four post-exposure treatments) were protected from lethal ZEBOV infection and survived. All four of the monkeys given seven post-exposure treatments were protected. The treatment regimen in the second study was well tolerated, with minor changes in liver enzymes that might have been related to viral infection.

The study represents the first demonstration of complete protection against a lethal human infectious disease in nonhuman primates using RNAi, according to lead author Dr. Thomas W. Geisbert of the Boston University School of Medicine.

"We believe this work justifies the immediate development of Ebola SNALP as a countermeasure to treat Ebola infected patients, either in outbreaks or accidental laboratory exposures," he said.

Ebola virus causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol (although more commonly spread through blood and bodily fluids of infected patients), is of concern both as a global health threat and a potential agent of biological warfare or terrorism.

Currently there are no available vaccines or therapies, so researchers working with Ebola virus must do so in maximum containment (Biosafety Level 4) laboratories. In these specially designed laboratories, investigators wear positive pressure "space suits" and breathe filtered air as they work, and all laboratory waste streams are sterilized.

The SNALP-RNAi therapeutic used in the study was developed by Tekmira Pharmaceuticals Corporation of Vancouver, BC. Previous research showed that these siRNAs completely protected guinea pigs when administered shortly after a lethal dose of ZEBOV was administered. While rodent studies are useful for screening prospective medical countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models.

Further studies in monkeys would be necessary to refine dosing, toxicology and other issued before the treatment could be licensed for human use.

"The significance of this report goes beyond the protection against Ebola virus," said COL John P. Skvorak, commander of USAMRIID. "It also represents the potential for this concept to be applied to other viral infections."

The study was a collaborative effort between USAMRIID, Boston University and Tekmira, and was partly funded by the Defense Threat Reduction Agency's Transformational Medical Technologies Initiative.

USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Department of Defense Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute conducts basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. While USAMRIID's primary mission is focused on the military, its research often has applications that benefit society as a whole. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit www.usamriid.army.mil.

Reference: Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Thomas W. Geisbert, Amy C. H. Lee, Marjorie Robbins, Joan B. Geisbert, Anna N. Honko, Vandana Sood, Joshua C. Johnson, Susan de Jong, Iran Tavakoli, Adam Judge, Lisa E. Hensley, Ian MacLachlan. The Lancet: 29 May 2010; 375: 1896-190

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>