Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental stroke drug also shows promise for people with Lou Gehrig's disease

04.03.2014

New Keck School of Medicine of USC research finds vascular damage in mice with ALS contributes to early development of the neurodegenerative disease, while repairing damage delays disease progression

Keck School of Medicine of USC neuroscientists have unlocked a piece of the puzzle in the fight against Lou Gehrig's disease, a debilitating neurological disorder that robs people of their motor skills. Their findings appear in the March 3, 2014, online edition of the Proceedings of the National Academy of Sciences of the United States of America, the official scientific journal of the U.S. National Academy of Sciences.

Neurovascular Unit of the Mouse Spinal Cord

A fluorescent image shows cells of the neurovascular unit in the mouse spinal cord, which consists of motor neurons (green) and blood vessels containing pericytes (red) and endothelial cells (blue). Winkler et al. (2014) show that disruption of blood vessels accelerates injury of motor neurons in amyotrophic lateral sclerosis.

Credit: Photo courtesy of Ethan A. Winkler and Berislav V. Zlokovic/University of Southern California

"We know that both people and transgenic rodents afflicted with this disease develop spontaneous breakdown of the blood-spinal cord barrier, but how these microscopic lesions affect the development of the disease has been unclear," said Berislav V. Zlokovic, M.D., Ph.D., the study's principal investigator and director of the Zilkha Neurogenetic Institute at USC. "In this study, we show that early motor neuron dysfunction related to the disease in mice is proportional to the degree of damage to the blood-spinal cord barrier and that restoring the integrity of the barrier delays motor neuron degeneration. We are hopeful that we can apply these findings to the corresponding disease mechanism in people. "

In this study, Zlokovic and colleagues found that an experimental drug now being studied in human stroke patients appears to protect the blood-spinal cord barrier's integrity in mice and delay motor neuron impairment and degeneration. The drug, an activated protein C analog called 3K3A-APC, was developed by Zlokovic's start-up biotechnology company, ZZ Biotech.

... more about:
»California »Cancer »Health »Medicine »USC »neurons »symptoms

Lou Gehrig's disease, also called amyotrophic lateral sclerosis, or ALS, attacks motor neurons, which are cells that control the muscles. The progressive degeneration of the motor neurons in ALS eventually leads to paralysis and difficulty breathing, eating and swallowing.

According to The ALS Association, approximately 15 people in the United States are diagnosed with ALS every day. It is estimated that as many as 30,000 Americans live with the disease. Most people who develop ALS are between the ages of 40 and 70, with an average age of 55 upon diagnosis. Life expectancy of an ALS patient averages about two to five years from the onset of symptoms.

ALS's causes are not completely understood, and no cure has yet been found. Only one Food and Drug Administration-approved drug called riluzole has been shown to prolong life by two to three months. There are, however, devices and therapies that can manage the symptoms of the disease to help people maintain as much independence as possible and prolong survival.

###

The international research team included scientists from the The Scripps Research Institute, University of Rochester Medical Center, Sichuan University's West China Hospital, and Ludwig Institute for Cancer Research at the University of California, San Diego. Grants from The ALS Association (1859) and National Institutes of Health (AG039452, AG23084, NS34467, HL031950, HL052246, NS27036) supported their research.

Article cited:

Winkler, E. A., Sengillo, J. D., Sagare, A. P., Zhao, Z., Ma, Q., Zuniga, E., … & Zlokovic, B. V. (2014). PNAS Early Edition, 1-8. Published online March 3, 2014; doi:10.1073/pnas.1401595111

ABOUT KECK MEDICINE OF USC

Keck Medicine of USC is the University of Southern California's medical enterprise, one of only two university-owned academic medical centers in the Los Angeles area. Encompassing academic, research and clinical entities, it consists of the Keck School of Medicine of USC, the region's first medical school; the renowned USC Norris Comprehensive Cancer Center, one of the first comprehensive cancer centers established in the United States; the USC Care Medical Group, the medical faculty practice; the Keck Medical Center of USC, which includes two acute care hospitals: 401-licensed bed Keck Hospital of USC and 60-licensed bed USC Norris Cancer Hospital; and USC Verdugo Hills Hospital, a 158-licensed bed community hospital. It also includes outpatient facilities in Beverly Hills, downtown Los Angeles, La Cañada Flintridge, Pasadena, and the USC University Park Campus. USC faculty physicians and Keck School of Medicine departments also have practices throughout Los Angeles, Orange and Riverside counties. The Keck Medicine of USC world-class medical facilities are staffed by nearly 600 physicians who are faculty at the renowned Keck School of Medicine of USC and part of USC Care Medical Group. They are not only clinicians, but cutting-edge researchers, leading professors and active contributors to national and international professional medical societies and associations.

Alison Trinidad | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: California Cancer Health Medicine USC neurons symptoms

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>