Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental immune-boosting drug worsens TB in mice

13.04.2010
An experimental drug that boosts production of the immune system protein interferon worsens tuberculosis (TB) in mice, according to scientists from the National Institutes of Health.

The drug acts indirectly by drawing certain immune cells, in which Mycobacterium tuberculosis (M.tb) bacteria thrive, to the lungs. The findings may have potential implications for the care of people infected with TB, the authors note. The research is reported in the May 3 issue of Journal of Clinical Investigation, now available online.

"Although our research was conducted in mice, our combined findings suggest that reactivation of TB should be considered as a potential side effect if compounds that boost type I interferon production, like the one used in this study, are tested in people who may be infected with M.tb," says Alan Sher, Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), NIH, who led the team of scientists.

Most people infected with M.tb do not develop active TB. Instead, the infection remains dormant, often for decades. Eventually, about 10 percent of people with latent infection do go on to develop active disease. Common triggers for reactivation include aging or other conditions that lower immunity.

Dr. Sher and his colleagues studied the effects of an experimental drug called poly-ICLC on immune responses to TB infection. Poly-ICLC stimulates the body to produce a potent immune system protein called type I interferon (type I IFN). Interferon was named for its ability to interfere with viral infections. Synthetic IFN is used to treat hepatitis B and C virus infections, as well as certain kinds of cancers.

In mouse studies, poly-ICLC protected the animals from viruses that can cause lethal infections, including pandemic influenza and SARS. It has also been shown to enhance the effects of several experimental vaccines when tested in animals. Poly-ICLC also is being tested in multiple human clinical trials as a possible cancer treatment when combined with cancer vaccines.

Earlier research into the effects of type I IFN on bacterial infections produced mixed results, notes Dr. Sher. Some studies showed that giving IFN to mice with non-tuberculous mycobacterial infections (Mycobacterium avium) lowered the amount of bacteria in their bodies. But in other studies, naturally occurring IFN appeared to promote rather than limit the growth of bacteria in mice infected with M.tb.

To sort out the mixed findings, NIAID investigator Lis R.V. Antonelli, Ph.D., dropped poly-ICLC into the noses of mice that had been infected with M.tb. The mice were infected either one day earlier to mimic an acute TB infection, or four months earlier to simulate a chronic TB infection. They were then compared with TB-infected, untreated mice. All the mice treated with poly-ICLC developed severe lung tissue damage. Moreover, levels of M.tb in their lungs were 100 times greater than in M.tb-infected mice that did not receive poly-ICLC.

Next, Dr. Antonelli performed a series of experiments to determine what kind of immune system cell was involved in hastening the disease in poly-ICLC-treated mice. Again, they compared poly-ICLC treated and untreated, M.tb-infected mice. In the treated group, the scientists found a fourfold increase in a specific subpopulation of immune cells called macrophages. In most infectious diseases, macrophages are drawn to the site of infection and help defend the host against disease. But when type I IFN production was elevated by poly-ICLC treatment, the surge in macrophages to the M.tb-infected lung actually harmed the host, notes Dr. Sher. TB bacteria live inside macrophages, and the specific subset detected in these experiments appears especially hospitable to M.tb.

Dr. Sher and his colleagues are currently testing the relevance of these findings to humans by determining whether under certain conditions type I IFN promotes the growth of M.tb in human macrophages. Such research could also provide important clues to exactly how and under what conditions latent TB is reactivated.

Dr. Antonelli, who was based at NIAID when the research was conducted, now works at Fiocruz, a government-sponsored research institute in Belo Horizonte, Brazil.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: LRV Antonelli et al. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. Journal of Clinical Investigation DOI: 10.1172/JCI40817 (2010).

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>