Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanded Blueprint

16.04.2010
Genetic incorporation of two different noncanonic amino acids into one protein

The genetic code includes information for only 20 amino acids (AAs). If this repertoire could be expanded, it would, for example, be possible to program bacteria to produce tailored proteins with various characteristics of interest to science, technology, or medicine.

In fact, the natural protein-production mechanism can be reprogrammed, but until now it has only been possible to incorporate a single new type of AA into a protein. Wenshe Liu and his co-workers at Texas A&M University (USA) have now successfully included two different, noncanonic amino acids into the genetic material of bacteria, as they report in the journal Angewandte Chemie.

In order to synthesize a protein, a cell first copies a “blueprint” (mRNA) from the corresponding gene and “reads” it (translation). The genetic code for every AA consists of three “letters” (nucleotides). In addition, there is a start codon and three different codons that mean “stop”. “Transporters” (tRNA) that specifically recognize the codons are loaded with the required AA and bring it to the place where protein synthesis occurs (ribosomes). The “loaders” are special enzymes (aminoacyl tRNA synthetases).

Only 20 AAs are naturally coded; these are known as the canonical AAs. Other AAs are made accessible to organisms by modification of individual AAs in the finished protein at a later stage. However, some bacteria that require an unusual AA as part of an enzyme used in their metabolism of methane use one of their stop codons (amber) for another purpose, so it functions as a codon for the additional AA. This method has previously been successfully emulated in the laboratory. Liu and his teams have now for the first time used two such bacterial systems in parallel. One of the tRNAs was mutated to recognize a different stop codon (ochre). By mutation, they were able to reprogram the associated aminoacyl tRNA synthetases so that they load up their tRNAs with the desired synthetic AA.

The researchers incorporated this altered genetic material into bacterial cells. As desired, these cells then incorporated two noncanonical AAs into one protein. These two AAs are constructed so that each has a specific “snap” where desired functional groups can later simply be “clicked on” (click chemistry). For example, it is possible to attach special pairs of molecules that fluoresce when they can exchange energy with each other. To do this, they must be at a specific distance and angle relative to each other. Such pairs make it possible to draw conclusions about the conformation of a protein, as well as its dynamic changes during a reaction.

Author: Wenshe Liu, Texas A&M University, College Station (USA), http://www.chem.tamu.edu/rgroup/liu/contact.html

Title: A Facile System for Genetic Incorporation of Two Different Noncanonical Amino Acids into One Protein in Escherichia coli

Angewandte Chemie International Edition 2010, 49, No. 18, 3211–3214, Permalink to the article: http://dx.doi.org/10.1002/anie.201000465

Wenshe Liu | Angewandte Chemie
Further information:
http://www.chem.tamu.edu/rgroup/liu/contact.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>