Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exercise triggers stem cells in muscle

University of Illinois researchers determined that an adult stem cell present in muscle is responsive to exercise, a discovery that may provide a link between exercise and muscle health. The findings could lead to new therapeutic techniques using these cells to rehabilitate injured muscle and prevent or restore muscle loss with age.

Mesenchymal stem cells (MSCs) in skeletal muscle have been known to be important for muscle repair in response to non-physiological injury, predominantly in response to chemical injections that significantly damage muscle tissue and induce inflammation. The researchers, led by kinesiology and community health professor Marni Boppart, investigated whether MSCs also responded to strain during exercise, and if so, how.

“Since exercise can induce some injury as part of the remodeling process following mechanical strain, we wondered if MSC accumulation was a natural response to exercise and whether these cells contributed to the beneficial regeneration and growth process that occurs post-exercise,” said Boppart, who also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

The researchers found that MSCs in muscle are very responsive to mechanical strain. They witnessed MSC accumulation in muscle of mice after vigorous exercise. Then, they determined that although MSCs don’t directly contribute to building new muscle fibers, they release growth factors that spur other cells in muscle to fuse and generate new muscle, providing the cellular basis for enhanced muscle health following exercise.

A key element to the Illinois team’s method was in exercising the mice before isolating the cells to trigger secretion of beneficial growth factors. Then, they dyed the cells with a fluorescent marker and injected them into other mice to see how MSCs coordinated with other muscle-building cells.

In addition to examining the cells in vivo, the researchers studied the cells’ response to strain on different substrates. They found that MSC response is very sensitive to the mechanical environment, indicating that conditions of muscle strain affect the cells’ activity.

“These findings are important because we’ve identified an adult stem cell in muscle that may provide the basis for muscle health with exercise and enhanced muscle healing with rehabilitation/movement therapy,” Boppart said. “The fact that MSCs in muscle have the potential to release high concentrations of growth factor into the circulatory system during exercise also makes us wonder if they provide a critical link between enhanced whole-body health and participation in routine physical activity.”

Next, the group hopes to determine whether these cells contribute to the decline in muscle mass over a person’s lifetime. Preliminary data suggest MSCs become deficient in muscle with age. The team hopes to develop a combinatorial therapy that utilizes molecular and stem-cell-based strategies to prevent age-related muscle loss.

“Although exercise is the best strategy for preserving muscle as we age, some individuals are just not able to effectively engage in physical activity,” Boppart said. “Disabilities can limit opportunities for muscle growth. We’re working hard to understand how we can best utilize these cells effectively to preserve muscle mass in the face of atrophy.”

The team published its findings in the journal PLoS One. The Illinois Regenerative Medicine Institute, the Ellison Medical Foundation and the Mary Jane Neer Foundation supported this work.

Editor’s notes: To contact Marni Boppart, call 217-244-1459; email

The paper, “Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle,” is available online.

Liz Ahlberg | University of Illinois
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>