Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise reduces damage after therapeutic irradiation to the brain

03.09.2008
Researchers at the Sahlgrenska Academy in Gothenburg show for the first time that exercise helps restore stem cell growth and improves behavior in young mice that suffered damage to the brain induced by a clinically relevant dose of radiation.

The researchers believe that these results are also applicable to children that have suffered damage due to radiotherapy of brain tumors.

Children that receive radiation treatment for brain tumors often develop learning and memory problems later in life that may be associated with attention deficits. These symptoms have been linked to radiation-induced damage, which not only kills cancer cells, but also stem cells that reside in the hippocampus, a region essential for proper memory function.

Dr. Andrew Naylor has previously studied the effects of physical exercise on stem cells, and Associate professor Klas Blomgren has studied the consequences of irradiation on brain cells. Together with Professor Georg Kuhn, a pioneer in the brain stem cell field, the group investigated whether physical training could counteract previously established damage to certain regions of the brain. They exposed nine-day-old mice to a radiation dose that resulted in damage to the mouse brain, similar to damage observed in human cancer patients. Half of the mice were given free access to a running wheel, which mice like to run on for extended periods of time. At 13 weeks of age, the mice were placed in an open space and were allowed to explore while their behavior was analyzed by studying a number of variables to describe their movement patterns.

The results from the study demonstrated that irradiated mice showed increased motor activity and altered movement patterns that were normalized if they were allowed to exercise. In addition, the mouse brains contained 50% more stem cells than their non-exercising counterparts. The researchers were also able to determine that newly formed nerve cells in an irradiated brain form fewer extensions, compared to a non-irradiated brain. The nerve extensions were not only fewer, but they also pointed in the wrong direction. Interestingly, if the animals were allowed to exercise, the nerve extensions were normalized. "These results suggest that irradiation-induced damage in children with brain tumors could be reduced if the child under guidance is allowed to do stimulating and fun exercise", says Professor Georg Kuhn.

Journal: Proceedings of the National Academy of Sciences USA
Title of article: Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain
Authors: Andrew Naylor, Klas Blomgren, Georg Kuhn
Link to article: http://www.pnas.org/content/early/2008/09/02/0711128105.full.pdf+html?sid=e05d83...
For further information, contact:
Professor Georg Kuhn, phone: +46 31 786 3435, +46 733 010 220, e-mail: georg.kuhn@neuro.gu.se

Associate professor/pediatrician Klas Blomgren, phone: +46 31 786 3376, +46 703 233 353, e-mail: klas.blomgren@neuro.gu.se

Ulrika Lundin
Press officer, The Sahlgrenska Academy at University of Gothenburg
Phone: +46 31 786 3869, +46 70 775 8851
e-mail: ulrika.lundin@sahlgrenska.gu.se
The Sahlgrenska Academy is the health science faculty at University of Gothenburg. It was formed in 2001, with the goal of bringing together the former faculties of medicine, health and care science and odontology.

Ulrika Lundin | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/early/2008/09/02/0711128105.full.pdf+html?sid=e05d83...
http://www.sahlgrenska.gu.se

Further reports about: Academy Brain Irradiation Radiation Stem brain tumor damage radiation dose stem cells

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>