Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise reduces damage after therapeutic irradiation to the brain

03.09.2008
Researchers at the Sahlgrenska Academy in Gothenburg show for the first time that exercise helps restore stem cell growth and improves behavior in young mice that suffered damage to the brain induced by a clinically relevant dose of radiation.

The researchers believe that these results are also applicable to children that have suffered damage due to radiotherapy of brain tumors.

Children that receive radiation treatment for brain tumors often develop learning and memory problems later in life that may be associated with attention deficits. These symptoms have been linked to radiation-induced damage, which not only kills cancer cells, but also stem cells that reside in the hippocampus, a region essential for proper memory function.

Dr. Andrew Naylor has previously studied the effects of physical exercise on stem cells, and Associate professor Klas Blomgren has studied the consequences of irradiation on brain cells. Together with Professor Georg Kuhn, a pioneer in the brain stem cell field, the group investigated whether physical training could counteract previously established damage to certain regions of the brain. They exposed nine-day-old mice to a radiation dose that resulted in damage to the mouse brain, similar to damage observed in human cancer patients. Half of the mice were given free access to a running wheel, which mice like to run on for extended periods of time. At 13 weeks of age, the mice were placed in an open space and were allowed to explore while their behavior was analyzed by studying a number of variables to describe their movement patterns.

The results from the study demonstrated that irradiated mice showed increased motor activity and altered movement patterns that were normalized if they were allowed to exercise. In addition, the mouse brains contained 50% more stem cells than their non-exercising counterparts. The researchers were also able to determine that newly formed nerve cells in an irradiated brain form fewer extensions, compared to a non-irradiated brain. The nerve extensions were not only fewer, but they also pointed in the wrong direction. Interestingly, if the animals were allowed to exercise, the nerve extensions were normalized. "These results suggest that irradiation-induced damage in children with brain tumors could be reduced if the child under guidance is allowed to do stimulating and fun exercise", says Professor Georg Kuhn.

Journal: Proceedings of the National Academy of Sciences USA
Title of article: Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain
Authors: Andrew Naylor, Klas Blomgren, Georg Kuhn
Link to article: http://www.pnas.org/content/early/2008/09/02/0711128105.full.pdf+html?sid=e05d83...
For further information, contact:
Professor Georg Kuhn, phone: +46 31 786 3435, +46 733 010 220, e-mail: georg.kuhn@neuro.gu.se

Associate professor/pediatrician Klas Blomgren, phone: +46 31 786 3376, +46 703 233 353, e-mail: klas.blomgren@neuro.gu.se

Ulrika Lundin
Press officer, The Sahlgrenska Academy at University of Gothenburg
Phone: +46 31 786 3869, +46 70 775 8851
e-mail: ulrika.lundin@sahlgrenska.gu.se
The Sahlgrenska Academy is the health science faculty at University of Gothenburg. It was formed in 2001, with the goal of bringing together the former faculties of medicine, health and care science and odontology.

Ulrika Lundin | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/early/2008/09/02/0711128105.full.pdf+html?sid=e05d83...
http://www.sahlgrenska.gu.se

Further reports about: Academy Brain Irradiation Radiation Stem brain tumor damage radiation dose stem cells

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>