Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excessive cell growth causes stress

11.07.2014

A protein that drives the development of cancer. A second protein that suppresses the harmful activity of the first: this could open up new paths for treatment, as explained by a Würzburg research group in the journal “Nature”.

Cancers develop due to changes in genetic material that ultimately trigger uncontrolled cell growth. In the majority of human tumors, the Myc gene has been altered such that it is excessively active. As a consequence, the tumor cells produce far too many Myc proteins.


Too much Myc causes stress in tumor cells. The images show pancreatic cells. Controls are presented on the left, and Myc-expressing cells on the right. The red coloring indicates cellular stress

(Daniel Murphy)

“We know from numerous experiments that increased quantities of Myc boost cell growth, modify the metabolism, and make a very significant contribution to tumor development,” says Professor Martin Eilers, cancer researcher at the University of Würzburg’s Biocenter.

What exactly do the Myc proteins do? They bind themselves to the genetic material in the cell nucleus and ensure that genes are activated. However, given that there is an “overdose” of them in tumor cells, they regulate very different genes there than in normal cells – with fatal consequences. “This pattern of gene activation is very specific for individual tumors. It even allows statements to be made about how aggressive a tumor is, and it enables prognoses concerning the progression of the disease,” says Eilers.

Proteins in pairs inhibit gene activation

Scientists know of a total of a few hundred genes that are activated in tumor cells by Myc proteins. But in fact the Myc proteins bind to tens of thousands of genes. Why do they attach themselves to so many genes, but only activate a few of them? What exactly constitutes the difference between binding and activation? This question has always puzzled scientists.

Now, more clarity is being brought to this issue by new research findings from the University of Würzburg that have just been published in the magazine “Nature”. Susanne Walz, Francesca Lorenzin, Elmar Wolf, and Martin Eilers from the Biocenter have discovered that the Myc proteins in tumor cells are not always alone when they bind to the genes. They are usually closely connected to a partner protein (Miz1). While Myc on its own activates a gene, the exact opposite happens if both proteins are present as a pair: gene activation is suppressed.

Defense response to overdose of Myc proteins

The Würzburg research group interprets this as a defense response: “It would appear that the cells recognize that they are producing too much Myc and try to counteract the stress created by this excessive growth signal.” This generates a balance between activation and suppression that is slightly different for every gene in tumor cells. This in turn results in the characteristic gene activation patterns that distinguish tumor cells from normal cells.

Further pursuing new approaches to treatment

According to Eilers, this new finding is not just of interest to basic research: “We can now identify genes that are specifically only transcribed in tumors and not in normal cells,” explains the professor. This offers new starting points for treatment. Eilers’ team is now keen to pursue these new approaches further and to do so in close collaboration with the cancer center at the university and university hospital, the “Comprehensive Cancer Center Mainfranken”.

Contact

Prof. Dr. Martin Eilers, Department of Biochemistry and Molecular Biology, Biocenter at the University of Würzburg, T +49 (0)931 31-84111, Martin.Eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Miz1 Myc Proteins activation genes progression proteins quantities tumor cells tumors

More articles from Life Sciences:

nachricht New way out: Researchers show how stem cells exit bloodstream
29.06.2016 | North Carolina State University

nachricht The large-scale stability of chromosomes
29.06.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

The large-scale stability of chromosomes

29.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>