Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excessive cell growth causes stress

11.07.2014

A protein that drives the development of cancer. A second protein that suppresses the harmful activity of the first: this could open up new paths for treatment, as explained by a Würzburg research group in the journal “Nature”.

Cancers develop due to changes in genetic material that ultimately trigger uncontrolled cell growth. In the majority of human tumors, the Myc gene has been altered such that it is excessively active. As a consequence, the tumor cells produce far too many Myc proteins.


Too much Myc causes stress in tumor cells. The images show pancreatic cells. Controls are presented on the left, and Myc-expressing cells on the right. The red coloring indicates cellular stress

(Daniel Murphy)

“We know from numerous experiments that increased quantities of Myc boost cell growth, modify the metabolism, and make a very significant contribution to tumor development,” says Professor Martin Eilers, cancer researcher at the University of Würzburg’s Biocenter.

What exactly do the Myc proteins do? They bind themselves to the genetic material in the cell nucleus and ensure that genes are activated. However, given that there is an “overdose” of them in tumor cells, they regulate very different genes there than in normal cells – with fatal consequences. “This pattern of gene activation is very specific for individual tumors. It even allows statements to be made about how aggressive a tumor is, and it enables prognoses concerning the progression of the disease,” says Eilers.

Proteins in pairs inhibit gene activation

Scientists know of a total of a few hundred genes that are activated in tumor cells by Myc proteins. But in fact the Myc proteins bind to tens of thousands of genes. Why do they attach themselves to so many genes, but only activate a few of them? What exactly constitutes the difference between binding and activation? This question has always puzzled scientists.

Now, more clarity is being brought to this issue by new research findings from the University of Würzburg that have just been published in the magazine “Nature”. Susanne Walz, Francesca Lorenzin, Elmar Wolf, and Martin Eilers from the Biocenter have discovered that the Myc proteins in tumor cells are not always alone when they bind to the genes. They are usually closely connected to a partner protein (Miz1). While Myc on its own activates a gene, the exact opposite happens if both proteins are present as a pair: gene activation is suppressed.

Defense response to overdose of Myc proteins

The Würzburg research group interprets this as a defense response: “It would appear that the cells recognize that they are producing too much Myc and try to counteract the stress created by this excessive growth signal.” This generates a balance between activation and suppression that is slightly different for every gene in tumor cells. This in turn results in the characteristic gene activation patterns that distinguish tumor cells from normal cells.

Further pursuing new approaches to treatment

According to Eilers, this new finding is not just of interest to basic research: “We can now identify genes that are specifically only transcribed in tumors and not in normal cells,” explains the professor. This offers new starting points for treatment. Eilers’ team is now keen to pursue these new approaches further and to do so in close collaboration with the cancer center at the university and university hospital, the “Comprehensive Cancer Center Mainfranken”.

Contact

Prof. Dr. Martin Eilers, Department of Biochemistry and Molecular Biology, Biocenter at the University of Würzburg, T +49 (0)931 31-84111, Martin.Eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Miz1 Myc Proteins activation genes progression proteins quantities tumor cells tumors

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>