Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excessive cell growth causes stress

11.07.2014

A protein that drives the development of cancer. A second protein that suppresses the harmful activity of the first: this could open up new paths for treatment, as explained by a Würzburg research group in the journal “Nature”.

Cancers develop due to changes in genetic material that ultimately trigger uncontrolled cell growth. In the majority of human tumors, the Myc gene has been altered such that it is excessively active. As a consequence, the tumor cells produce far too many Myc proteins.


Too much Myc causes stress in tumor cells. The images show pancreatic cells. Controls are presented on the left, and Myc-expressing cells on the right. The red coloring indicates cellular stress

(Daniel Murphy)

“We know from numerous experiments that increased quantities of Myc boost cell growth, modify the metabolism, and make a very significant contribution to tumor development,” says Professor Martin Eilers, cancer researcher at the University of Würzburg’s Biocenter.

What exactly do the Myc proteins do? They bind themselves to the genetic material in the cell nucleus and ensure that genes are activated. However, given that there is an “overdose” of them in tumor cells, they regulate very different genes there than in normal cells – with fatal consequences. “This pattern of gene activation is very specific for individual tumors. It even allows statements to be made about how aggressive a tumor is, and it enables prognoses concerning the progression of the disease,” says Eilers.

Proteins in pairs inhibit gene activation

Scientists know of a total of a few hundred genes that are activated in tumor cells by Myc proteins. But in fact the Myc proteins bind to tens of thousands of genes. Why do they attach themselves to so many genes, but only activate a few of them? What exactly constitutes the difference between binding and activation? This question has always puzzled scientists.

Now, more clarity is being brought to this issue by new research findings from the University of Würzburg that have just been published in the magazine “Nature”. Susanne Walz, Francesca Lorenzin, Elmar Wolf, and Martin Eilers from the Biocenter have discovered that the Myc proteins in tumor cells are not always alone when they bind to the genes. They are usually closely connected to a partner protein (Miz1). While Myc on its own activates a gene, the exact opposite happens if both proteins are present as a pair: gene activation is suppressed.

Defense response to overdose of Myc proteins

The Würzburg research group interprets this as a defense response: “It would appear that the cells recognize that they are producing too much Myc and try to counteract the stress created by this excessive growth signal.” This generates a balance between activation and suppression that is slightly different for every gene in tumor cells. This in turn results in the characteristic gene activation patterns that distinguish tumor cells from normal cells.

Further pursuing new approaches to treatment

According to Eilers, this new finding is not just of interest to basic research: “We can now identify genes that are specifically only transcribed in tumors and not in normal cells,” explains the professor. This offers new starting points for treatment. Eilers’ team is now keen to pursue these new approaches further and to do so in close collaboration with the cancer center at the university and university hospital, the “Comprehensive Cancer Center Mainfranken”.

Contact

Prof. Dr. Martin Eilers, Department of Biochemistry and Molecular Biology, Biocenter at the University of Würzburg, T +49 (0)931 31-84111, Martin.Eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Miz1 Myc Proteins activation genes progression proteins quantities tumor cells tumors

More articles from Life Sciences:

nachricht Discovery of an unexpected function of a protein linked to neurodegenerative diseases
28.04.2015 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Rubber from dandelions / Scientists identify key components in the formation of rubber
28.04.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux

28.04.2015 | Innovative Products

Discovery of an unexpected function of a protein linked to neurodegenerative diseases

28.04.2015 | Life Sciences

Rubber from dandelions / Scientists identify key components in the formation of rubber

28.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>