Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolving Microbes Help Iowa State Engineers Turn Bio-Oil Into Advanced Biofuels

16.10.2012
Microbes are working away in an Iowa State University laboratory to ferment biofuels from the sugar and acetate produced by rapidly heating biomass such as corn stalks and sawdust.

But it’s not an easy job for E. coli and C. reinhardtii.

The bacteria and microalgae, respectively, don’t like something in the bio-oil produced by fast pyrolysis – the rapid heating of biomass without oxygen and with catalysts. The result of the thermochemical process is a thick, brown oil that smells like molasses.

A research team led by Laura Jarboe, an Iowa State assistant professor of chemical and biological engineering, is feeding the bio-oil (also known as “pyrolytic sugars”) to the microbes. The E. coli are supposed to turn the levoglucosan in the sugar-rich fraction of bio-oil into ethanol and lactic acid; the C. reinhardtii are supposed to turn acetate-rich fractions into lipids for biodiesel.

It’s part of the hybrid approach Iowa State researchers are using to produce the next generation of biofuels. They’re combining two conversion paths – thermochemical and biochemical – to find efficient ways to produce renewable fuels and chemicals.

“The goal is to produce biorenewable fuels and chemicals in a manner that’s economically competitive with petroleum-based processes,” Jarboe said.

There are, however, contaminants and toxins in the bio-oil that are getting in the way of the fuel production. Jarboe and a research team are experimenting with pre-treatments of the bio-oil that could reduce the toxicity. And they’re working to develop microbes that can tolerate the contaminants.

In addition to Jarboe, the research team includes Robert C. Brown, the Iowa Farm Bureau Director of Iowa State’s Bioeconomy Institute, an Anson Marston Distinguished Professor in Engineering and the Gary and Donna Hoover Chair in Mechanical Engineering; Zhiyou Wen, an associate professor of food science and human nutrition; Zhanyou Chi, a post-doctoral research associate for Iowa State’s Center for Sustainable Environmental Technologies; Tao Jin, a doctoral student in chemical and biological engineering; and Yi Liang, a doctoral student in food science and human nutrition. The project is supported by a three-year, $300,000 grant from the National Science Foundation and a three-year, $315,020 grant from the Iowa Energy Center.

The researchers are using a technique called directed evolution to produce microbes that are more tolerant of the contaminants in bio-oil. The microbes are grown with higher and higher concentrations of bio-oil and as they divide, they replicate their DNA. Sometimes there are replication mistakes that lead to mutations.

“It could be a mistake that’s immediately lethal,” Jarboe said. “Or it could be a mistake that helps the microbe tolerate the problematic compounds and it grows faster.

“At the end of the process, we want to say, ‘Hey, I’ve got a great bug.’”

Every day researchers check the experiments for signs of progress. So far, Jarboe said the evolving bacteria and microalgae have been able to tolerate slightly higher concentrations of bio-oil.

When mutations eventually produce a better breed of microbe, the researchers will analyze genomic data to learn and understand the important mutations. That will allow researchers to duplicate the microbes for better biofuel production.

Jarboe said development of those hungry, robust microbes could lead to important advancements in biofuel production: a hybrid process that’s biorenewable, fast, cheap and doesn’t depend on food crops as a source of biomass.

Laura Jarboe, Chemical and Biological Engineering, 515-294-2319, ljarboe@iastate.edu

Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>