Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary game of rock-paper-scissors may lead to new species

19.02.2010
New research on lizards supports an old idea about how species can originate. Morphologically distinct types are often found within species, and biologists have speculated that these "morphs" could be the raw material for speciation. What were once different types of individuals within the same population could eventually evolve into separate species.

A new study conducted by researchers at the University of California, Santa Cruz, supports this idea. The study documents the disappearance of certain morphs of the side-blotched lizard in some populations. The researchers reported their findings in a paper published this week in the online early edition of Proceedings of the National Academy of Sciences (PNAS).

The side-blotched lizard, Uta stansburiana, has three morphs differing in color and mating behavior. Barry Sinervo, a professor of ecology and evolutionary biology at UCSC, has studied a population of side-blotched lizards near Los Baños, Calif., for over 20 years. Ammon Corl, now a postdoctoral researcher at Uppsala University in Sweden, led the new study as a graduate student at UCSC and is first author of the paper.

Previous work by Sinervo and his colleagues showed that competition among male side-blotched lizards takes the form of a rock-paper-scissors game in which each mating strategy beats and is beaten by one other strategy. Males with orange throats can take territory from blue-throated males because they have more testosterone and body mass. As a result, orange males control large territories containing many females. Blue-throated males cooperate with each other to defend territories and closely guard females, so they are able to beat the sneaking strategy of yellow-throated males. Yellow-throated males are not territorial, but mimic female behavior and coloration to sneak onto the large territories of orange males to mate with females.

"My goal when starting my Ph.D. thesis research was to understand how this fascinating mating system evolved," Corl said. "We studied lizard populations from California to Texas and from Washington State down to Baja California Sur in Mexico."

Corl found the three color morphs in many places, but not everywhere. Some populations were missing some of the color morphs. For example, populations in the northwest only have orange-throated lizards, while only orange- and blue-throated morphs are found on Anacapa Island in the Channel Islands. In the field, the researchers captured lizards to collect tissue samples for DNA analysis and then released them back into the wild. In the lab, they used the tissue samples to get DNA sequences from all of the lizard populations in the study.

"Based on these sequences, we reconstructed the 'family tree' of the lizard populations and figured out which populations were more closely related to one another. This let us figure out how the mating strategies evolved," Corl said.

The results showed that all three color morphs existed millions of years ago and have persisted since then in many populations. Over time, however, some branches of the lizard family tree lost some of the color types.

"What was particularly interesting was the pattern in how color morphs were lost," Corl said. "Any time there was a loss, the yellow type--the sneaky males that mimic females--was the first to go. Thus, the rock-paper-scissors game can break down on an evolutionary timescale. Something about the game must change so that, for instance, both the rock and scissors strategies are able to beat paper."

Sinervo has documented the cycling of the rock-paper-scissors game at his main study site for 22 years, with the dominant morph in the population changing every four to five years. "It's like an evolutionary clock ticking between rock, paper, scissors then back to rock," he said. "Ammon's research indicates that the game has been cycling for millions of years at some sites, and yet at other sites it collapses on one or two strategies and begins to create new species. It is simply mind-boggling to think about deep time and these evolutionary cycles."

Many aspects of the evolutionary history of these lizards are consistent with the theory that morphs can be involved in speciation, Corl said. Evolutionary theory predicts that new species could arise from particular morphs originally found in a population containing multiple morphs. Side-blotched lizards started off with three color morphs. If just one or two types occur in a population, they look just like the original morphs.

The theory was also supported by patterns in the formation of subspecies, which are the precursors to new species. Two subspecies of side-blotched lizard that originated from populations with three morphs now have only a single color morph. Thus, populations that lose morphs are not transitory, but can persist and eventually become a different species.

The study also found evidence to support the hypothesis that rapid evolutionary change occurs when particular morphs are lost from the system. "Imagine the three lizard morphs playing rock-paper-scissors," Corl explained. "They have very specific adaptations for fighting one another. Now imagine that some morphs are lost, leaving a population of all rock morphs. Their adaptations for fighting the paper and scissors morphs are no longer useful. Therefore, rapid evolutionary change is expected in a population of rock morphs as they adapt to a new game in which they only fight other rock morphs."

The study showed clear evidence of very rapid evolution of body size when morphs are lost from a population. "Such rapid evolution could eventually cause populations to evolve into distinct species. We are the first group to provide a statistical test of this hypothesis," Corl said.

The idea of morphs being involved in speciation is an old one. Charles Darwin conducted experiments with different reproductive morphs in flowers to try to gain insight into the process of speciation. However, the new paper by Corl and colleagues is one of the first studies to use modern techniques to tackle the problem of morphs and speciation.

"My hope is that the paper will inspire other researchers to consider a role for morphs in the evolution of the species that they study," said Corl. "For most species, the speciation process is thought to begin only after populations are geographically separated. Our study shows that the distinctive morphs that build up within populations are important for understanding speciation. Thus, the first stages of new species may occur within and not between populations. This idea could fuel lots of interesting research for many years to come."

In addition to Corl and Sinervo, the other coauthors of the paper are Alison Davis, a graduate student in Sinervo's lab now at UC Berkeley, and Shawn Kuchta, a postdoctoral researcher in Sinervo's lab now at Dartmouth University. This research was supported by a Mildred Mathias grant, a Gaige Fund award, a Sigma Xi grant, a National Geographic Society grant, and multiple grants from the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>