Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The evolutionary consequences of infidelity

02.04.2013
Male and female blue tits are hard to distinguish for the human observer.

However, in the UV-range, visible to birds, the male is much more colourful. A look at the monogamous mating system again reveals that all is not what it seems: in every second nest are chicks not related to the care-giving father.


Blue tit - is it a male or a female?
Dr. R. Höling


Are all eggs in the nest of these blue tits from one father? Emmi Schlicht

An already mated male can increase the number of his offspring by siring extra-pair offspring. Emmi Schlicht and Bart Kempenaers of the Max Planck Institute for Ornithology in Seewiesen investigated if this could be the driving force behind the evolution of sexual dimorphism. However, effects of extra-pair paternity are limited, cuckoldry can even reduce the intensity of sexual selection.

In many species males and females look very different. Male deer wear impressive antlers and the magnificent plumage of a male peacock is impressive not only to the hen. In our backyard we can identify the male in chaffinches or house sparrows easily from the distinctive colouration of breast and crown. Why do these differences exist? For deer and peacock the answer is straightforward, at least in principle: a well-endowed male can better defend the females on his territory, or attract more females in the first place. For these animals sexual dimorphism has evolved, because such traits help males to obtain additional offspring. For females sexual selection is weaker as they cannot increase their number of offspring by outcompeting other females.

However, many bird species pose a challenge for this explanation by evolutionary biologists. Most bird species are socially monogamous, in permanent relationships with a partner of the other sex. Both parents have to work hard to raise their offspring. So why do males in monogamous species have more colourful plumage than females, if the number of offspring for both parents is decided by the clutch size of the female?

Paternity analyses have long revealed that not all offspring are related to the male that feeds them. Therefore, a monogamous male can have additional offspring if he succeeds in siring additional eggs in the nest of other females. Is extra-pair mating the key to sexual dimorphism?

A study on blue tits has tackled this question at its basis. Emmi Schlicht and Bart Kempenaers of the Max Planck Institute for Ornithology in Seewiesen have used data from six years of field research to examine the mating system of blue tits. The result: social relationships are the ones that count, whereas extra-pair liaisons are of advantage but do not strongly enhance sexual selection.

„Male blue tits have most of their descendants with their social partner, some of them can even form pair bonds with two females“ says Bart Kempenaers, the senior author. „A few additional eggs due to an extra-pair mating cannot compete with that“. Selection will thus optimize the traits of these males to secure social success and only to a lesser extent to win additional offspring with extra-pair matings.

Interestingly, the scientists found an unexpected effect of extra-pair activity. In a sibship- analysis they estimated that there are up to 24 additional males per year that sire offspring, but do not breed in the nestboxes on the study site. If these unknown males really did not have an own nest, the offspring in other broods were their only descendants. That means that for these unpaired males, the offspring produced by extra-pair matings are essential. “In this case extra-pair matings actually reduce the differences between males in their reproductive success”, says Emmi Schlicht, first author of the study. “That makes a selection of „the best“ less effective and hinders a fast evolution of traits in males that increase their mating success”. Infidelity can even slow evolution of sexual dimorphism. (ES/ SSP)

Original publication:
Emmi Schlicht and Bart Kempenaers: Effects of social and extra-pair mating on sexual selection in blue tits (Cyanistes caeruleus). Evolution. Published online on 22 March 2013

Contact:
Emmi Schlicht
Max Planck Institute for Ornithology (MPIO), Seewiesen
Department Behavioural Ecology and Evolutionary Genetics
schlicht@orn.mpg.de
Phone +49 8157 932 349

Prof. Dr. Bart Kempenaers
MPIO Seewiesen, Department Behavioural Ecology and Evolutionary Genetics
b.kempenaers@orn.mpg.de
Phone +49 8157 932 232

Dr. Sabine Spehn
MPIO Seewiesen, Public Relations
pr_seewiesen@orn.mpg.de
Phone +49 8157 932 421

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>