Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An evolutionary compromise for long tooth preservation

24.07.2013
Researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig and the Senckenberg Research Institute in Frankfurt have conducted stress analyses on gorilla teeth of differing wear stages.

Their findings show that different features of the occlusal surface antagonize tensile stresses in the tooth to tooth contact during the chewing process. They further show that tooth wear with its loss of dental tissue and the reduction of the occlusal relief decreases tensile stresses in the tooth. Thus, when the condition of the occlusal surface changes, the biomechanical requirements on the existing dental material change as well – an evolutionary compromise for tooth preservation.


Maximal principal stress distribution observed in three gorilla teeth of an unworn (left), a lightly worn (middle) and a worn (right) condition. © MPI f. Evolutionary Anthropology

First, the researchers created 3D digital models of three gorilla lower second molars differing in wear stages. In a second step they applied a Software tool (Occlusal Fingerprint Analyser) developed in the Senckenberg Research Institute to precisely determine tooth to tooth contacts. They then used an engineering approach, finite element analysis (FEA), to evaluate whether some dental traits usually found in hominin and extant great ape molars have important biomechanical implications.

The results show that in unworn and slightly worn molars (with a well-formed occlusal relief that is most effective for processing food) tensile stresses concentrate in the grooves of the occlusal surface. In such a condition, the different crests of a molar carry out important biomechanical functions, for example, by reinforcing the crown against stresses that occur during the chewing process. Due to a loss of tooth tissue and a reduction of the occlusal relief the functionality of these crests diminishes during an individual’s lifetime. However, this reduced functionality of the crests in worn teeth is counterbalanced by an increase in contact areas during tooth to tooth contacts, which ultimately contributes to a dispersion of the forces that affect the occlusal surface.

This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite forces and to reduce tooth failure throughout the lifetime of an individual. “It seems that we observe an evolutionary compromise for long tooth preservation. Even though worn teeth are not as efficient they still fulfill their task. This would not be the case if they were lost prematurely“, says Stefano Benazzi of the Max Planck Institute for Evolutionary Anthropology. He adds: “Tooth evolution and dental biomechanics can only be understood, if we further investigate tooth function in respect to the dynamic changes of tooth structures during the lifespan of individuals”.

“The results have strong implications for understanding the functional biomechanics of dental traits, for deciphering the evolutionary trend of our masticatory apparatus and might have important implications in modern dentistry for improving dental treatments”, says Jean-Jacques Hublin, director of the Department of Human Evolution at the Max Planck Institute for Evolutionary Anthropology. [SJ]

Original publication:

Stefano Benazzi, Huynh Nhu Nguyen, Ottmar Kullmer, Jean-Jacques Hublin
Unravelling the functional biomechanics of dental features and tooth wear
PLOS ONE, July 23, 2013, http://dx.plos.org/10.1371/journal.pone.0069990
Contact:
Dr. Stefano Benazzi
Department of Human Evolution
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-362
Email: stefano_benazzi@­eva.mpg.de
Dr. Ottmar Kullmer
Department of Palaeoanthropology and Messel Research
Senckenberg Research Institute, Frankfurt/Main
Phone: +49 69 7542-1364
Email: okullmer@­senckenberg.de
Press relations offices:
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@eva.mpg.de
Regina Bartel
Senckenberg Gesellschaft für Naturforschung
Phone: +49 69 7542 1434
Email: regina.bartel@senckenberg.de

Dr. Sören Dürr | Senckenberg
Further information:
http://www.senckenberg.de/presse
http://www.mpg.de/7474328/tooth-preservation?filter_order=L&research_topic

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>