Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary Biology: Why Cattle Only Have two Toes

20.06.2014

During evolutionary diversification of vertebrate limbs, the number of toes in even-toed ungulates such as cattle and pigs was reduced and transformed into paired hooves.

Scientists at the University of Basel have identified a gene regulatory switch that was key to evolutionary adaption of limbs in ungulates. The study provides fascinating insights into the molecular history of evolution and is published by Nature today.

The fossil record shows that the first primitive even-toed ungulates had legs with five toes (=digits), just like modern mice and humans. During their evolution, the basic limb skeletal structure was significantly modified such that today’s hippopotami have four toes, while the second and fifth toe face backwards in pigs. In cattle, the distal skeleton consists of two rudimentary dew claws and two symmetrical and elongated middle digits that form the cloven hoof, which provides good traction for walking and running on different terrains.

Comparative analysis of embryonic development

A team led by Prof. Rolf Zeller from the Department of Biomedicine at the University of Basel has now investigated the molecular changes which could be responsible for the evolutionary adaptation of ungulate limbs. To this aim, they compared the activity of genes in mouse and cattle embryos which control the development of fingers and toes during embryonic development.

The development of limbs in both species is initially strikingly similar and molecular differences only become apparent during hand and foot plate development: in mouse embryos the so-called Hox gene transcription factors are distributed asymmetrically in the limb buds which is crucial to the correct patterning of the distal skeleton. In contrast, their distribution becomes symmetrical from early stages onward in limb buds of cattle embryos: “We think this early loss of molecular asymmetry triggered the evolutionary changes that ultimately resulted in development of cloven-hoofed distal limb skeleton in cattle and other even-toed ungulates”, says Developmental Geneticist Prof. Rolf Zeller.

Loss of asymmetry preceded the reduction and loss of digits

The scientists in the Department of Biomedicine then focused their attention on the Sonic Hedgehog (SHH) signaling pathway, as it controls Hox gene expression and the development of five fingers and toes in mice and humans. They discovered that the gene expression in limb buds of cattle embryos is altered, such that the cells giving rise to the distal skeleton fail to express the Hedgehog receptor, called Patched1. Normally, this receptor serves as an antenna for SHH, but without Patched1 the SHH signal cannot be received and the development of five distinct digits is disrupted. The researchers could establish that the altered genomic region – a so-called cis-regulatory module – is linked to the observed loss of Patched1 receptors and digit asymmetry in cattle embryos.

“The identified genetic alterations affecting this regulatory switch offer unprecedented molecular insights into how the limbs of even-toed ungulates diverged from those of other mammals roughly 55 million years ago”, explains Rolf Zeller. At this stage, it is unclear what triggered inactivation of the Patched1 gene regulatory switch. “We assume that it is the result of progressive evolution, as this switch degenerated in cattle and other even-toed ungulates, while it remained fully functional in some vertebrates such as mice and humans”.

Original source
Javier Lopez-Rios, Amandine Duchesne, Dario Speziale, Guillaume Andrey, Kevin A. Peterson, Philipp Germann, Erkan Ünal, Jing Liu, Sandrine Floriot, Sarah Barbey, Yves Gallard, Magdalena Müller-Gerbl, Andrew D. Courtney, Christophe Klopp, Sabrina Rodriguez, Robert Ivanek, Christian Beisel, Carol Wicking, Dagmar Iber, Benoit Robert, Andrew P. McMahon, Denis Duboule and Rolf Zeller
Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs
Nature (2014) | doi: 10.1038/nature13289

Further information
Prof. Dr. Rolf Zeller, University of Basel, Department of Biomedicine, phone: +41 61 695 30 33, email: rolf.zeller@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/nature13289 - Abstract

Reto Caluori | Universität Basel

Further reports about: Biology Cattle Evolutionary Hedgehog asymmetry embryos fingers limbs regulatory skeleton

More articles from Life Sciences:

nachricht Epigenetic Modification Increases Susceptibility to Obesity and Predicts Fatty Liver Later in Life
23.05.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

nachricht Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer
20.05.2016 | Johns Hopkins Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

Im Focus: Laser pulses: conductors for protons

Using ultrashort laser pulses an international team at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich has managed to manipulate the positions of atoms in hydrocarbon molecules.

Light can conduct the play of atoms and molecules in the microcosm. Humans manage to interfere with this play. Researchers from the Laboratory of Attosecond...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

Permafrost Conference in Potsdam, Germany

17.05.2016 | Event News

 
Latest News

Autonomous driving: emergence of new billion euro market

23.05.2016 | Information Technology

NEST: building of the future is up and running

23.05.2016 | Architecture and Construction

Researchers find that Earth may be home to 1 trillion species

23.05.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>