Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary biologists glimpse early stages of Y-chromosome degeneration

14.05.2014

Findings shed light on the evolutionary history of sex chromosomes

In many species, the possession of X and Y chromosomes determines whether an individual develops into a male or female. In humans, for example, individuals who inherit their father's Y chromosome become male (XY), and individuals who inherit their father's X chromosome become female (XX).

This system of sex determination has evolved independently multiple times and a striking feature of its evolution is that Y chromosomes have degenerated genetically, losing many genes over time. What is not well understood, however, is what happens to the Y chromosome during the earliest stages of this evolution, or the time scales over which degeneration occurs.

Now, University of Toronto (U of T) researchers have found a way to shed light on the early stages of degeneration, by investigating the process in plants.

"In humans, the Y chromosome has undergone extensive gene loss over its roughly200-million-year evolutionary history, and now retains only about three per cent of its ancestral genes. We know very little about the early stages of the process, however, because it happened so long ago," said U of T Department of Ecology & Evolutionary Biology (EEB) professor Spencer Barrett, co-investigator of a study published today in Proceedings of the National Academy of Sciences. "The most well-studied Y chromosomes, including those in humans and other animal species, began degenerating hundreds of millions of years ago. Not so with plants."

"The emergence of separate sexes in plants is a relatively recent evolutionary innovation, making them ideal for this study," said Barret. "Only about six per cent of flowering plants have males and females. The remainder are hermaphrodites."

The scientists used a plant species with separate sexes whose X and Y chromosomes probably first evolved around 15 million years ago at the most, making them relatively young compared to those in animals.

"We tested for Y-chromosome degeneration in Rumex hastatulus, an annual plant from the southern USA commonly known as heartwing sorrel. We found that genes on the Y chromosomes have already started to undergo genetic degeneration, despite their relatively recent origin," said Josh Hough, a PhD candidate in U of T's Department of Ecology & Evolutionary Biology and lead author of the study. "Importantly, our results indicate that the extent of this degeneration depends on how long ago the genes on the sex chromosomes stopped recombining with each other."

The theory of sex chromosome evolution holds that Y-chromosome degeneration occurs as a result of X and Y chromosomes failing to recombine their genes during reproduction. Recombination is a key genetic process in which chromosomes pair and exchange their DNA sequences, and it occurs between all other chromosomes in the genome, including the X chromosome, which recombines in females. This genetic mixing has become suppressed between the X and Y chromosomes, however, probably because they contain genes that affect 'femaleness' and 'maleness', and combining these genes onto a single chromosome can cause infertility problems.

"Suppressing recombination between the X and Y makes sense because it prevents genes that determine female-specific traits from occurring on the Y chromosome," said Hough. But without recombination natural selection becomes less efficient, and harmful mutations cannot be removed from the Y chromosome. As a result, genes on the Y chromosome eventually become impaired in function or lost entirely."

The researchers crossed multiple male and female plants and then traced the inheritance of genes by sequencing the DNA in parents and their offspring. This allowed them to find which genes were located on the sex chromosomes because they segregate differently than genes on other chromosomes. Computer-assisted analyses of the genetic sequences enabled the scientists to then test for gene loss, loss of gene function, the accumulation of mutations, and other harmful changes on the sex chromosomes.

Suppressed recombination between X and Y chromosomes occurred much more recently in plants than in animals, so the scientists were able to get a unique glimpse of what happens during the very earliest stages of Y-chromosome degeneration.

"In addition to being much younger than in animals, the sex chromosomes in Rumex hastatulus are particularly interesting because of the recent emergence of a new sex chromosome system, in which some males carry a second, even younger, Y chromosome," says Hough. "This allowed us to compare the two Y chromosomes and assess the time scales over which genes are deteriorating."

"The genes on the second Y chromosome are very new arrivals, having arisen within a single species", says EEB professor Stephen Wright, another investigator on the study. "This gave us a key time point to understand the chronology of Y-chromosome evolution. Remarkably, even these genes were already showing early signs of degeneration."

###

Additional researchers contributing to this collaborative effort included postdoctoral fellow Jesse Hollister and computational biologist Wei Wang, both of EEB. The findings are reported in the article "Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus" published online May 13 in Proceedings of the National Academy of Sciences. The research was supported by Discovery grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Barrett and Wright.

MEDIA CONTACTS:

Josh Hough
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-7177 (office)
josh.hough@utoronto.ca

Spencer C. H. Barrett
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-4151 (office)
spencer.barrett@utoronto.ca

Stephen I. Wright
Department of Ecology and Evolutionary Biology
University of Toronto
(416) 946-8508 (office)
stephen.wright@utoronto.ca

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | Eurek Alert!
Further information:
http://www.utoronto.ca

Further reports about: Biology DNA EEB Ecology Evolutionary Toronto Y-chromosome animals chromosomes female genes recombination species

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>