Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary biologists glimpse early stages of Y-chromosome degeneration

14.05.2014

Findings shed light on the evolutionary history of sex chromosomes

In many species, the possession of X and Y chromosomes determines whether an individual develops into a male or female. In humans, for example, individuals who inherit their father's Y chromosome become male (XY), and individuals who inherit their father's X chromosome become female (XX).

This system of sex determination has evolved independently multiple times and a striking feature of its evolution is that Y chromosomes have degenerated genetically, losing many genes over time. What is not well understood, however, is what happens to the Y chromosome during the earliest stages of this evolution, or the time scales over which degeneration occurs.

Now, University of Toronto (U of T) researchers have found a way to shed light on the early stages of degeneration, by investigating the process in plants.

"In humans, the Y chromosome has undergone extensive gene loss over its roughly200-million-year evolutionary history, and now retains only about three per cent of its ancestral genes. We know very little about the early stages of the process, however, because it happened so long ago," said U of T Department of Ecology & Evolutionary Biology (EEB) professor Spencer Barrett, co-investigator of a study published today in Proceedings of the National Academy of Sciences. "The most well-studied Y chromosomes, including those in humans and other animal species, began degenerating hundreds of millions of years ago. Not so with plants."

"The emergence of separate sexes in plants is a relatively recent evolutionary innovation, making them ideal for this study," said Barret. "Only about six per cent of flowering plants have males and females. The remainder are hermaphrodites."

The scientists used a plant species with separate sexes whose X and Y chromosomes probably first evolved around 15 million years ago at the most, making them relatively young compared to those in animals.

"We tested for Y-chromosome degeneration in Rumex hastatulus, an annual plant from the southern USA commonly known as heartwing sorrel. We found that genes on the Y chromosomes have already started to undergo genetic degeneration, despite their relatively recent origin," said Josh Hough, a PhD candidate in U of T's Department of Ecology & Evolutionary Biology and lead author of the study. "Importantly, our results indicate that the extent of this degeneration depends on how long ago the genes on the sex chromosomes stopped recombining with each other."

The theory of sex chromosome evolution holds that Y-chromosome degeneration occurs as a result of X and Y chromosomes failing to recombine their genes during reproduction. Recombination is a key genetic process in which chromosomes pair and exchange their DNA sequences, and it occurs between all other chromosomes in the genome, including the X chromosome, which recombines in females. This genetic mixing has become suppressed between the X and Y chromosomes, however, probably because they contain genes that affect 'femaleness' and 'maleness', and combining these genes onto a single chromosome can cause infertility problems.

"Suppressing recombination between the X and Y makes sense because it prevents genes that determine female-specific traits from occurring on the Y chromosome," said Hough. But without recombination natural selection becomes less efficient, and harmful mutations cannot be removed from the Y chromosome. As a result, genes on the Y chromosome eventually become impaired in function or lost entirely."

The researchers crossed multiple male and female plants and then traced the inheritance of genes by sequencing the DNA in parents and their offspring. This allowed them to find which genes were located on the sex chromosomes because they segregate differently than genes on other chromosomes. Computer-assisted analyses of the genetic sequences enabled the scientists to then test for gene loss, loss of gene function, the accumulation of mutations, and other harmful changes on the sex chromosomes.

Suppressed recombination between X and Y chromosomes occurred much more recently in plants than in animals, so the scientists were able to get a unique glimpse of what happens during the very earliest stages of Y-chromosome degeneration.

"In addition to being much younger than in animals, the sex chromosomes in Rumex hastatulus are particularly interesting because of the recent emergence of a new sex chromosome system, in which some males carry a second, even younger, Y chromosome," says Hough. "This allowed us to compare the two Y chromosomes and assess the time scales over which genes are deteriorating."

"The genes on the second Y chromosome are very new arrivals, having arisen within a single species", says EEB professor Stephen Wright, another investigator on the study. "This gave us a key time point to understand the chronology of Y-chromosome evolution. Remarkably, even these genes were already showing early signs of degeneration."

###

Additional researchers contributing to this collaborative effort included postdoctoral fellow Jesse Hollister and computational biologist Wei Wang, both of EEB. The findings are reported in the article "Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus" published online May 13 in Proceedings of the National Academy of Sciences. The research was supported by Discovery grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Barrett and Wright.

MEDIA CONTACTS:

Josh Hough
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-7177 (office)
josh.hough@utoronto.ca

Spencer C. H. Barrett
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-4151 (office)
spencer.barrett@utoronto.ca

Stephen I. Wright
Department of Ecology and Evolutionary Biology
University of Toronto
(416) 946-8508 (office)
stephen.wright@utoronto.ca

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | Eurek Alert!
Further information:
http://www.utoronto.ca

Further reports about: Biology DNA EEB Ecology Evolutionary Toronto Y-chromosome animals chromosomes female genes recombination species

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>