Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution more rapid than Darwin thought

22.03.2010
Evolution can proceed much more rapidly than has long been thought. This is shown by Magnus Karlsson, a doctoral candidate at Linnaeus University in Kalmar, in his dissertation about the impact of genetics and the environment on the color patterns of pygmy grasshoppers.

It has been the accepted view among evolutionary biologists since Darwin published his Origin of Species in 1859 that measurable evolutionary changes occur slowly, often taking hundreds of generations. This view may now be about to change.

Pygmy grasshoppers exist in many different color variants and in many types of environment. Through a series of experiments and studies in nature, Magnus Karlsson discovered that the distribution between the color variants of pygmy grasshoppers differs across different environments. In recently burnt over areas, a very high proportion of the grasshoppers are black. In unburnt areas, on the other hand, the black variant is unusual. What's more, the proportion of black grasshoppers changes very rapidly between generations in the burnt areas, whereas the proportion in unburnt areas remains the same over the same period of time.

Magnus Karlsson presents data that show that the pygmy grasshoppers' color changes by natural selection. He believes that the primary cause of these changes is birds and other animals that hunt using their vision. The black grasshoppers are simply less visible against the burnt background, so they survive more often. But as the environment changes and becomes more complex, the advantage of being dark diminishes, and other color variants can once again increase in number.

In his experiments, Magnus Karlsson has also shown that the color pattern of the pygmy grasshopper is genetically conditioned and is passed on from parent to offspring. On the other hand, various environmental factors, such as crowdedness or the substrate the grasshoppers grow up on, do not affect their color. In other words, there is no indication that the grasshoppers themselves can change their color depending on what environment they are surrounded by. Therefore, the great differences that exist between burnt and unburnt environments are the result of unusually rapid evolutionary change.

But it is not only that evolution sometimes proceeds rapidly; variation itself also offers major advantages. In groups consisting of many different color variants, survival is higher than in groups with less color variation. This means quite simply that variable groups may find it easier to adapt to environmental changes and that they are more productive.

The practical significance of Magnus Karlsson's discoveries is broad and just as varied as his grasshoppers. He believes this new knowledge can be used in planning preservation projects for threatened species and to improve yields in agriculture.

"But the most important part of the dissertation is that I have shown that evolution sometimes proceeds incredibly rapidly. This is huge," says Magnus Karlsson.

His dissertation is titled Evolution in Changing Environments Revealed by Fire Melanism in Pygmy Grasshoppers.

Contact: Magnus Karlsson, phone: +46 (0)480-446219; mobile: +46 (0)73-5626014 or magnus.h.karlsson@lnu.se

Pressofficer Karolina Ekstrand; +46-76 647 60 30; karolina.ekstrand@lnu.se

Karolina Ekstrand | idw
Further information:
http://www.lnu.se
http://www.vr.se

Further reports about: Evolution Magnus environmental change evolutionary change

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>