Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution more rapid than Darwin thought

22.03.2010
Evolution can proceed much more rapidly than has long been thought. This is shown by Magnus Karlsson, a doctoral candidate at Linnaeus University in Kalmar, in his dissertation about the impact of genetics and the environment on the color patterns of pygmy grasshoppers.

It has been the accepted view among evolutionary biologists since Darwin published his Origin of Species in 1859 that measurable evolutionary changes occur slowly, often taking hundreds of generations. This view may now be about to change.

Pygmy grasshoppers exist in many different color variants and in many types of environment. Through a series of experiments and studies in nature, Magnus Karlsson discovered that the distribution between the color variants of pygmy grasshoppers differs across different environments. In recently burnt over areas, a very high proportion of the grasshoppers are black. In unburnt areas, on the other hand, the black variant is unusual. What's more, the proportion of black grasshoppers changes very rapidly between generations in the burnt areas, whereas the proportion in unburnt areas remains the same over the same period of time.

Magnus Karlsson presents data that show that the pygmy grasshoppers' color changes by natural selection. He believes that the primary cause of these changes is birds and other animals that hunt using their vision. The black grasshoppers are simply less visible against the burnt background, so they survive more often. But as the environment changes and becomes more complex, the advantage of being dark diminishes, and other color variants can once again increase in number.

In his experiments, Magnus Karlsson has also shown that the color pattern of the pygmy grasshopper is genetically conditioned and is passed on from parent to offspring. On the other hand, various environmental factors, such as crowdedness or the substrate the grasshoppers grow up on, do not affect their color. In other words, there is no indication that the grasshoppers themselves can change their color depending on what environment they are surrounded by. Therefore, the great differences that exist between burnt and unburnt environments are the result of unusually rapid evolutionary change.

But it is not only that evolution sometimes proceeds rapidly; variation itself also offers major advantages. In groups consisting of many different color variants, survival is higher than in groups with less color variation. This means quite simply that variable groups may find it easier to adapt to environmental changes and that they are more productive.

The practical significance of Magnus Karlsson's discoveries is broad and just as varied as his grasshoppers. He believes this new knowledge can be used in planning preservation projects for threatened species and to improve yields in agriculture.

"But the most important part of the dissertation is that I have shown that evolution sometimes proceeds incredibly rapidly. This is huge," says Magnus Karlsson.

His dissertation is titled Evolution in Changing Environments Revealed by Fire Melanism in Pygmy Grasshoppers.

Contact: Magnus Karlsson, phone: +46 (0)480-446219; mobile: +46 (0)73-5626014 or magnus.h.karlsson@lnu.se

Pressofficer Karolina Ekstrand; +46-76 647 60 30; karolina.ekstrand@lnu.se

Karolina Ekstrand | idw
Further information:
http://www.lnu.se
http://www.vr.se

Further reports about: Evolution Magnus environmental change evolutionary change

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>