Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution more rapid than Darwin thought

22.03.2010
Evolution can proceed much more rapidly than has long been thought. This is shown by Magnus Karlsson, a doctoral candidate at Linnaeus University in Kalmar, in his dissertation about the impact of genetics and the environment on the color patterns of pygmy grasshoppers.

It has been the accepted view among evolutionary biologists since Darwin published his Origin of Species in 1859 that measurable evolutionary changes occur slowly, often taking hundreds of generations. This view may now be about to change.

Pygmy grasshoppers exist in many different color variants and in many types of environment. Through a series of experiments and studies in nature, Magnus Karlsson discovered that the distribution between the color variants of pygmy grasshoppers differs across different environments. In recently burnt over areas, a very high proportion of the grasshoppers are black. In unburnt areas, on the other hand, the black variant is unusual. What's more, the proportion of black grasshoppers changes very rapidly between generations in the burnt areas, whereas the proportion in unburnt areas remains the same over the same period of time.

Magnus Karlsson presents data that show that the pygmy grasshoppers' color changes by natural selection. He believes that the primary cause of these changes is birds and other animals that hunt using their vision. The black grasshoppers are simply less visible against the burnt background, so they survive more often. But as the environment changes and becomes more complex, the advantage of being dark diminishes, and other color variants can once again increase in number.

In his experiments, Magnus Karlsson has also shown that the color pattern of the pygmy grasshopper is genetically conditioned and is passed on from parent to offspring. On the other hand, various environmental factors, such as crowdedness or the substrate the grasshoppers grow up on, do not affect their color. In other words, there is no indication that the grasshoppers themselves can change their color depending on what environment they are surrounded by. Therefore, the great differences that exist between burnt and unburnt environments are the result of unusually rapid evolutionary change.

But it is not only that evolution sometimes proceeds rapidly; variation itself also offers major advantages. In groups consisting of many different color variants, survival is higher than in groups with less color variation. This means quite simply that variable groups may find it easier to adapt to environmental changes and that they are more productive.

The practical significance of Magnus Karlsson's discoveries is broad and just as varied as his grasshoppers. He believes this new knowledge can be used in planning preservation projects for threatened species and to improve yields in agriculture.

"But the most important part of the dissertation is that I have shown that evolution sometimes proceeds incredibly rapidly. This is huge," says Magnus Karlsson.

His dissertation is titled Evolution in Changing Environments Revealed by Fire Melanism in Pygmy Grasshoppers.

Contact: Magnus Karlsson, phone: +46 (0)480-446219; mobile: +46 (0)73-5626014 or magnus.h.karlsson@lnu.se

Pressofficer Karolina Ekstrand; +46-76 647 60 30; karolina.ekstrand@lnu.se

Karolina Ekstrand | idw
Further information:
http://www.lnu.se
http://www.vr.se

Further reports about: Evolution Magnus environmental change evolutionary change

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>