Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution more rapid than Darwin thought

22.03.2010
Evolution can proceed much more rapidly than has long been thought. This is shown by Magnus Karlsson, a doctoral candidate at Linnaeus University in Kalmar, in his dissertation about the impact of genetics and the environment on the color patterns of pygmy grasshoppers.

It has been the accepted view among evolutionary biologists since Darwin published his Origin of Species in 1859 that measurable evolutionary changes occur slowly, often taking hundreds of generations. This view may now be about to change.

Pygmy grasshoppers exist in many different color variants and in many types of environment. Through a series of experiments and studies in nature, Magnus Karlsson discovered that the distribution between the color variants of pygmy grasshoppers differs across different environments. In recently burnt over areas, a very high proportion of the grasshoppers are black. In unburnt areas, on the other hand, the black variant is unusual. What's more, the proportion of black grasshoppers changes very rapidly between generations in the burnt areas, whereas the proportion in unburnt areas remains the same over the same period of time.

Magnus Karlsson presents data that show that the pygmy grasshoppers' color changes by natural selection. He believes that the primary cause of these changes is birds and other animals that hunt using their vision. The black grasshoppers are simply less visible against the burnt background, so they survive more often. But as the environment changes and becomes more complex, the advantage of being dark diminishes, and other color variants can once again increase in number.

In his experiments, Magnus Karlsson has also shown that the color pattern of the pygmy grasshopper is genetically conditioned and is passed on from parent to offspring. On the other hand, various environmental factors, such as crowdedness or the substrate the grasshoppers grow up on, do not affect their color. In other words, there is no indication that the grasshoppers themselves can change their color depending on what environment they are surrounded by. Therefore, the great differences that exist between burnt and unburnt environments are the result of unusually rapid evolutionary change.

But it is not only that evolution sometimes proceeds rapidly; variation itself also offers major advantages. In groups consisting of many different color variants, survival is higher than in groups with less color variation. This means quite simply that variable groups may find it easier to adapt to environmental changes and that they are more productive.

The practical significance of Magnus Karlsson's discoveries is broad and just as varied as his grasshoppers. He believes this new knowledge can be used in planning preservation projects for threatened species and to improve yields in agriculture.

"But the most important part of the dissertation is that I have shown that evolution sometimes proceeds incredibly rapidly. This is huge," says Magnus Karlsson.

His dissertation is titled Evolution in Changing Environments Revealed by Fire Melanism in Pygmy Grasshoppers.

Contact: Magnus Karlsson, phone: +46 (0)480-446219; mobile: +46 (0)73-5626014 or magnus.h.karlsson@lnu.se

Pressofficer Karolina Ekstrand; +46-76 647 60 30; karolina.ekstrand@lnu.se

Karolina Ekstrand | idw
Further information:
http://www.lnu.se
http://www.vr.se

Further reports about: Evolution Magnus environmental change evolutionary change

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>