Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution painted onto butterfly wings

02.06.2016

Gene that helps butterflies stand out also helps moths blend in

Using a reverse paint-by-numbers approach, scientists have located another gene that controls the brilliant patterning of Heliconius butterfly wings. Led by former Smithsonian Tropical Research Institute (STRI) fellow Nicole Nadeau, the researchers identified variations in the gene that correspond to wing color and pattern variation in three different Heliconius species. Published in Nature, June 2016, the discovery puts scientists a step closer to unlocking the code responsible for diversity and evolution in butterflies and moths.


This is a passionvine butterfly (Heliconius erato demophoon) feeding on a Psychotria flower in the wild in Panama. The cortex gene controls the yellow bar on the hind-wing.

Credit: Chris Jiggins

Found in the Neotropics, the 45-odd species of Heliconius, also called passionvine or longwing butterflies, have more than 400 different wing patterns, typically of varying shapes of red, orange, yellow, black and white. Individuals of the same species from different regions have different markings, while multiple species in the same region mimic each other's patterning. Local birds learn to associate one distinctive-looking unpalatable meal with another, regardless of species. Scientists use the same visual cues to uncover the genes working behind the scenes.

"Essentially, we are visualizing evolution on the wing," said co-author Owen McMillan, staff scientist at STRI. Passionvine butterflies are a unique model for studying evolution because different species have independently and rapidly evolved similar, visible solutions for survival. "We can connect the dots between the wing patterns we see in nature and the patterns of genes expressed during their development."

In the study, variants of a gene called cortex were associated with independently evolved wing patterns in three different butterfly mimics. Unlike other genes that simply turn on or off a color switch in wing cells, the scientists found that the cortex gene is expressed in different color regions of the developing wing tissues at different stages of the butterflies' growth from larva to pupa to adult.

One of the unique features of butterfly and moth wings is that they are covered in tiny scales that look like roof shingles. Nadeau, now a research fellow at the University of Sheffield, said, "It seems likely that cortex took on a role in wing patterning in the ancestor of all butterflies and moths when wings first started to be covered in scales."

In an independent study published in the same issue of Nature, scientists found that cortex is also involved in expressing all-black, "sooty" wings in peppered moths, a famous adaptation to pollution observed during the Industrial Revolution in England. Since variations in cortex seem to confer different survival advantages to an insect, it can be an important site for rapid evolution as populations preserve the gene variants in their local habitats.

McMillan noted that it took 10 years to zero in on the cortex gene as a factor influencing Heliconius wing variation. Now that the gene has been located, scientists can target it using new technologies like the CRISPR gene-editing tool. Doing so will help them answer bigger questions, he said, adding, "The great challenge of this century is to understand how a rather simple genetic code generates the extraordinary diversity on our planet."

This work builds on previous studies conducted on passionvine butterflies, including a full sequencing of the genome of H. melpomene, published in Nature in 2012. Researchers involved in this study worked on butterflies bred at the Smithsonian insectaries in Gamboa, Panama. The Smithsonian Tropical Research Institute will open the Gamboa Terrestrial Science Laboratory later this year to expand opportunities for related research and collaboration.

###

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a part of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Nadeau, N. J. et al. 2016. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature. DOI: 10.1038/nature17961

Media Contact

Beth King
kingb@si.edu
507-212-8216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

Further reports about: Heliconius STRI Smithsonian Tropical Research butterfly

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>