Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution by mistake

26.01.2011
Charles Darwin based his groundbreaking theory of natural selection on the realization that genetic variation among organisms is the key to evolution.

Some individuals are better adapted to a given environment than others, making them more likely to survive and pass on their genes to future generations. But exactly how nature creates variation in the first place still poses somewhat of a puzzle to evolutionary biologists.

Now, Joanna Masel, associate professor in the UA's department of ecology and evolutionary biology, and postdoctoral fellow Etienne Rajon discovered the ways organisms deal with mistakes that occur while the genetic code in their cells is being interpreted greatly influences their ability to adapt to new environmental conditions – in other words, their ability to evolve.

"Evolution needs a playground in order to try things out," Masel said. "It's like in competitive business: New products and ideas have to be tested to see whether they can live up to the challenge."

The finding is reported in a paper published in the journal Proceedings of the National Academy of Sciences.

In nature, it turns out, many new traits that, for example, enable their bearers to conquer new habitats, start out as blunders: mistakes made by cells that result in altered proteins with changed properties or functions that are new altogether, even when there is nothing wrong with the gene itself. Sometime later, one of these mistakes can get into the gene and become more permanent.

"If the mechanisms interpreting genetic information were completely flawless, organisms would stay the same all the time and be unable to adapt to new situations or changes in their environment," said Masel, who is also a member of the UA's BIO5 Institute.

Living beings face two options of handling the dangers posed by errors, Masel and Rajon wrote. One is to avoid making errors in the first place, for example by having a proofreading mechanism to spot and fix errors as they arise. The authors call this a global solution, since it is not specific to any particular mistake, but instead watches over the entire process.

The alternative is to allow errors to happen, but evolve robustness to the effects of each of them. Masel and Rajon call this strategy a local solution, because in the absence of a global proofreading mechanism, it requires an organism to be resilient to each and every mistake that pops up.

"We discovered that extremely small populations will evolve global solutions, while very large populations will evolve local solutions," Masel said. "Most realistically sized populations can go either direction but will gravitate toward one or the other. But once they do, they rarely switch, even over the course of evolutionary time."

Using what is known about yeast, a popular model organism in basic biological research, Masel and Rajon formulated a mathematical model and ran computer simulations of genetic change in populations.

Avoiding or fixing errors comes at a cost, they pointed out. If it didn't, organisms would have evolved nearly error-free accuracy in translating genetic information into proteins. Instead, there is a trade-off between the cost of keeping proteins free of errors and the risk of allowing potentially deleterious mistakes.

In previous publications, Masel's group introduced the idea of variation within a population producing "hopeful and hopeless monsters" – organisms with genetic changes whose consequences can be either mostly harmless or deadly, but rarely in between.

In the present paper, Masel and Rajon report that natural variation comes in two flavors: regular variation, which is generally bad most of the time, since the odds of a genetic mutation leading to something useful or even better are pretty slim, and what they call cryptic variation, which is less likely to be deadly, and more likely to be mostly harmless.

So how does cryptic variation work and why is it so important for understanding evolution?

By allowing for a certain amount of mistakes to occur instead of quenching them with global proofreading machinery, organisms gain the advantage of allowing for what Masel calls pre-selection: It provides an opportunity for natural selection to act on sequences even before mutations occur.

"There is evidence that cryptic gene sequences still get translated into protein," Masel explained, "at least occasionally."

"When those proteins are bad enough, the sequences that produce them can be selected against. For example, if we imagine a protein with an altered amino acid sequence causing it to not fold correctly and pile up inside the cell, that would be very toxic to the organism."

"In this case of a misfolded protein, selection would favor mutations causing that genetic sequence to not be translated into protein or it would favor sequences in which there is a change so that even if that protein is made by accident, the altered sequence would be harmless."

"Pre-selection puts that cryptic variation in a state of readiness," Masel said. "One could think of local solutions as natural selection going on behind the scenes, weeding out variations that are going to be catastrophic, and enriching others that are only slightly bad or even harmless."

"Whatever is left after this process of pre-selection has to be better," she pointed out. "Therefore, populations relying on this strategy have a greater capability to evolve in response to new challenges. With too much proofreading, that pre-selection can't happen."

"Most populations are fairly well adapted and from an evolutionary perspective get no benefit from lots of variation. Having variation in a cryptic form gets around that because the organism doesn't pay a large cost for it, but it's still there if it needs it."

According to Masel, studying how nature creates innovation holds clues for human society as well.

"We find that biology has a clever solution. It lets lots of ideas flourish, but only in a cryptic form and even while it's cryptic, it weeds out the worst ideas. This is an extremely powerful and successful strategy. I think companies, governments, economics in general can learn a lot on how to foster innovation from understanding how biological innovation works."

This study was funded by the National Institutes of Health, or NIH, and through a scholarship awarded to Masel by the Pew Charitable Trusts.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>