Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution by mistake

26.01.2011
Charles Darwin based his groundbreaking theory of natural selection on the realization that genetic variation among organisms is the key to evolution.

Some individuals are better adapted to a given environment than others, making them more likely to survive and pass on their genes to future generations. But exactly how nature creates variation in the first place still poses somewhat of a puzzle to evolutionary biologists.

Now, Joanna Masel, associate professor in the UA's department of ecology and evolutionary biology, and postdoctoral fellow Etienne Rajon discovered the ways organisms deal with mistakes that occur while the genetic code in their cells is being interpreted greatly influences their ability to adapt to new environmental conditions – in other words, their ability to evolve.

"Evolution needs a playground in order to try things out," Masel said. "It's like in competitive business: New products and ideas have to be tested to see whether they can live up to the challenge."

The finding is reported in a paper published in the journal Proceedings of the National Academy of Sciences.

In nature, it turns out, many new traits that, for example, enable their bearers to conquer new habitats, start out as blunders: mistakes made by cells that result in altered proteins with changed properties or functions that are new altogether, even when there is nothing wrong with the gene itself. Sometime later, one of these mistakes can get into the gene and become more permanent.

"If the mechanisms interpreting genetic information were completely flawless, organisms would stay the same all the time and be unable to adapt to new situations or changes in their environment," said Masel, who is also a member of the UA's BIO5 Institute.

Living beings face two options of handling the dangers posed by errors, Masel and Rajon wrote. One is to avoid making errors in the first place, for example by having a proofreading mechanism to spot and fix errors as they arise. The authors call this a global solution, since it is not specific to any particular mistake, but instead watches over the entire process.

The alternative is to allow errors to happen, but evolve robustness to the effects of each of them. Masel and Rajon call this strategy a local solution, because in the absence of a global proofreading mechanism, it requires an organism to be resilient to each and every mistake that pops up.

"We discovered that extremely small populations will evolve global solutions, while very large populations will evolve local solutions," Masel said. "Most realistically sized populations can go either direction but will gravitate toward one or the other. But once they do, they rarely switch, even over the course of evolutionary time."

Using what is known about yeast, a popular model organism in basic biological research, Masel and Rajon formulated a mathematical model and ran computer simulations of genetic change in populations.

Avoiding or fixing errors comes at a cost, they pointed out. If it didn't, organisms would have evolved nearly error-free accuracy in translating genetic information into proteins. Instead, there is a trade-off between the cost of keeping proteins free of errors and the risk of allowing potentially deleterious mistakes.

In previous publications, Masel's group introduced the idea of variation within a population producing "hopeful and hopeless monsters" – organisms with genetic changes whose consequences can be either mostly harmless or deadly, but rarely in between.

In the present paper, Masel and Rajon report that natural variation comes in two flavors: regular variation, which is generally bad most of the time, since the odds of a genetic mutation leading to something useful or even better are pretty slim, and what they call cryptic variation, which is less likely to be deadly, and more likely to be mostly harmless.

So how does cryptic variation work and why is it so important for understanding evolution?

By allowing for a certain amount of mistakes to occur instead of quenching them with global proofreading machinery, organisms gain the advantage of allowing for what Masel calls pre-selection: It provides an opportunity for natural selection to act on sequences even before mutations occur.

"There is evidence that cryptic gene sequences still get translated into protein," Masel explained, "at least occasionally."

"When those proteins are bad enough, the sequences that produce them can be selected against. For example, if we imagine a protein with an altered amino acid sequence causing it to not fold correctly and pile up inside the cell, that would be very toxic to the organism."

"In this case of a misfolded protein, selection would favor mutations causing that genetic sequence to not be translated into protein or it would favor sequences in which there is a change so that even if that protein is made by accident, the altered sequence would be harmless."

"Pre-selection puts that cryptic variation in a state of readiness," Masel said. "One could think of local solutions as natural selection going on behind the scenes, weeding out variations that are going to be catastrophic, and enriching others that are only slightly bad or even harmless."

"Whatever is left after this process of pre-selection has to be better," she pointed out. "Therefore, populations relying on this strategy have a greater capability to evolve in response to new challenges. With too much proofreading, that pre-selection can't happen."

"Most populations are fairly well adapted and from an evolutionary perspective get no benefit from lots of variation. Having variation in a cryptic form gets around that because the organism doesn't pay a large cost for it, but it's still there if it needs it."

According to Masel, studying how nature creates innovation holds clues for human society as well.

"We find that biology has a clever solution. It lets lots of ideas flourish, but only in a cryptic form and even while it's cryptic, it weeds out the worst ideas. This is an extremely powerful and successful strategy. I think companies, governments, economics in general can learn a lot on how to foster innovation from understanding how biological innovation works."

This study was funded by the National Institutes of Health, or NIH, and through a scholarship awarded to Masel by the Pew Charitable Trusts.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>