Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution provides clue to blood clotting

21.07.2011
A simple cut to the skin unleashes a complex cascade of chemistry to stem the flow of blood. Now, scientists at Washington University School of Medicine in St. Louis have used evolutionary clues to reveal how a key clotting protein assembles. The finding sheds new light on common bleeding disorders.

The long tube-shaped protein with a vital role in blood clotting is called von Willebrand Factor (VWF). Made in cells that form the inner lining of blood vessels, VWF circulates in the blood seeking out sites of injury. When it finds them, its helical tube unfurls to catch platelets and form blood clots. Defects in VWF cause von Willebrand Disease, the most common inherited bleeding disorder in humans.

“The challenge for the cell is how to build this massive protein without clogging the machinery,” says J. Evan Sadler, MD, PhD, professor of medicine and senior author of the study published in July in the Journal of Biological Chemistry. “The cell has solved this problem by making the assembly of von Willebrand Factor dependent on its location in the cell.”

And VWF knows its location in a cell because pH, a measure of how acidic or basic a liquid is, varies from one cellular structure to the next. On a scale of 0 to 14, pure water has a neutral pH of about 7; human blood is slightly basic with a pH of 7.4.

In a cell, the building blocks of VWF form in an area with the same pH as blood. Then these building blocks are shipped to an area that is more acidic. Called the Golgi, this cellular compartment is known for its role in packaging proteins and has a pH of about 6.2. In this acidic environment, the building blocks of VWF are able to form long chains and fold into its signature helical tubules. But how this assembly process works has not been well understood.

From basic biophysics, Sadler and his colleagues knew that only one amino acid in the long protein chain is likely to “sense” a pH change from 7.4 to 6.2. Moving to an acidic environment, this amino acid, histidine, gains a positive charge. The group suspected that this charge may trigger the VWF building blocks to link together in a long chain.

But there are many histidines located throughout the chain. Like 26 letters of the alphabet form thousands of words, 20 essential amino acids form all proteins in the body. To identify which histidines might be guiding the amino acid chain to form the long VWF tubules, Sadler and his team looked to evolution.

“If a particular histidine is important in this process, it should be present in the same location across many species,” Sadler says.

So Sadler’s group, including the paper’s first author, Luke T. Dang, who was an undergraduate student when he did this work, gathered the DNA sequences of VWF for humans, 19 other placental mammals, a marsupial, two birds, a reptile, an amphibian and five fish. Dang is now a graduate student at the University of Washington, Seattle.

“By lining up the sequences, we found a relatively small number of histidines that are in the same place across species,” Sadler says. “It then becomes manageable to mutate them individually and see if that prevents von Willebrand Factor from assembling.”

Out of the many histidines in the amino acid sequence of VWF, they found two that are important in sensing the pH change and guiding the building blocks to form chains in an acidic environment. When Dang replaced either of these histidines with an amino acid that provides no positive charge, the chain did not form. But when Dang forced a positive charge to always be present at these locations, the chain formed again.

“A positive charge at these positions is important for von Willebrand Factor to assemble properly so it can perform its biological function,” says Sadler, also a hematologist who specializes in treating patients with blood clotting disorders. “Without VWF, you bleed.”

According to Sadler, defects in VWF disproportionately affect women because the protein is especially important for controlling bleeding during menstruation and childbirth. Sadler says this work helps to better understand the defects in pathways that cause von Willebrand Disease and related conditions.

Dang LT, Purvis AR, Huang RH, Westfield LA, Sadler JE. Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand Factor. Journal of Biological Chemistry. July 2011.

This work was supported by the National Institutes of Health (NIH) and the American Heart Association Midwest Affiliate Postdoctoral Fellowship Award.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>