Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution provides clue to blood clotting

21.07.2011
A simple cut to the skin unleashes a complex cascade of chemistry to stem the flow of blood. Now, scientists at Washington University School of Medicine in St. Louis have used evolutionary clues to reveal how a key clotting protein assembles. The finding sheds new light on common bleeding disorders.

The long tube-shaped protein with a vital role in blood clotting is called von Willebrand Factor (VWF). Made in cells that form the inner lining of blood vessels, VWF circulates in the blood seeking out sites of injury. When it finds them, its helical tube unfurls to catch platelets and form blood clots. Defects in VWF cause von Willebrand Disease, the most common inherited bleeding disorder in humans.

“The challenge for the cell is how to build this massive protein without clogging the machinery,” says J. Evan Sadler, MD, PhD, professor of medicine and senior author of the study published in July in the Journal of Biological Chemistry. “The cell has solved this problem by making the assembly of von Willebrand Factor dependent on its location in the cell.”

And VWF knows its location in a cell because pH, a measure of how acidic or basic a liquid is, varies from one cellular structure to the next. On a scale of 0 to 14, pure water has a neutral pH of about 7; human blood is slightly basic with a pH of 7.4.

In a cell, the building blocks of VWF form in an area with the same pH as blood. Then these building blocks are shipped to an area that is more acidic. Called the Golgi, this cellular compartment is known for its role in packaging proteins and has a pH of about 6.2. In this acidic environment, the building blocks of VWF are able to form long chains and fold into its signature helical tubules. But how this assembly process works has not been well understood.

From basic biophysics, Sadler and his colleagues knew that only one amino acid in the long protein chain is likely to “sense” a pH change from 7.4 to 6.2. Moving to an acidic environment, this amino acid, histidine, gains a positive charge. The group suspected that this charge may trigger the VWF building blocks to link together in a long chain.

But there are many histidines located throughout the chain. Like 26 letters of the alphabet form thousands of words, 20 essential amino acids form all proteins in the body. To identify which histidines might be guiding the amino acid chain to form the long VWF tubules, Sadler and his team looked to evolution.

“If a particular histidine is important in this process, it should be present in the same location across many species,” Sadler says.

So Sadler’s group, including the paper’s first author, Luke T. Dang, who was an undergraduate student when he did this work, gathered the DNA sequences of VWF for humans, 19 other placental mammals, a marsupial, two birds, a reptile, an amphibian and five fish. Dang is now a graduate student at the University of Washington, Seattle.

“By lining up the sequences, we found a relatively small number of histidines that are in the same place across species,” Sadler says. “It then becomes manageable to mutate them individually and see if that prevents von Willebrand Factor from assembling.”

Out of the many histidines in the amino acid sequence of VWF, they found two that are important in sensing the pH change and guiding the building blocks to form chains in an acidic environment. When Dang replaced either of these histidines with an amino acid that provides no positive charge, the chain did not form. But when Dang forced a positive charge to always be present at these locations, the chain formed again.

“A positive charge at these positions is important for von Willebrand Factor to assemble properly so it can perform its biological function,” says Sadler, also a hematologist who specializes in treating patients with blood clotting disorders. “Without VWF, you bleed.”

According to Sadler, defects in VWF disproportionately affect women because the protein is especially important for controlling bleeding during menstruation and childbirth. Sadler says this work helps to better understand the defects in pathways that cause von Willebrand Disease and related conditions.

Dang LT, Purvis AR, Huang RH, Westfield LA, Sadler JE. Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand Factor. Journal of Biological Chemistry. July 2011.

This work was supported by the National Institutes of Health (NIH) and the American Heart Association Midwest Affiliate Postdoctoral Fellowship Award.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>