Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution and Venomous Snakes: Diet Distinguishes Look-Alikes on Two Continents

11.06.2014

On opposite sides of the globe over millions of years, the snakes of North America and Australia independently evolved similar body types that helped them move and capture prey more efficiently.

Snakes on both continents include stout-bodied, highly camouflaged ambush predators, such as rattlesnakes in North America and death adders in Australia. There are slender, fast-moving foragers on both continents, as well as small burrowing snakes.


Photo by Daniel Rabosky.

The southern shovel-nosed snake is a small, desert-dwelling species of Australian elapid snake that feeds almost exclusively on lizard eggs.

This independent evolution of similar body forms in response to analogous ecological conditions is a striking example of a phenomenon called convergence. Yet despite similarities in outward appearance, a new University of Michigan study shows that look-alike snakes from the two continents differ dramatically in at least one major attribute: diet.

"Most biologists tend to assume that convergence in body form for a group of organisms implies that they must be ecologically similar," said U-M evolutionary biologist Daniel Rabosky. "But our study shows that there is almost no overlap in diet between many of the snakes that are morphologically very similar."

... more about:
»Australian »Venomous »Zoology »continents »eggs »lizards »species »venom

Rabosky is an assistant professor in the Department of Ecology and Evolutionary Biology and curator of herpetology at the U-M Museum of Zoology. He is co-author of a paper on the topic to be published online June 10 in the journal Proceedings of the Royal Society B. The first author is U-M doctoral student Michael Grundler.

While North America is home to at least seven distinct groups of "advanced" snakes, only one major group—the elapids—colonized Australia roughly 12 million years ago. Elapids, which have hollow, fixed fangs through which they inject venom, are found worldwide and include king cobras, coral snakes, mambas and kraits.

Over millions of years, evolution allowed Australia's elapids to diversify and specialize through a process called adaptive radiation. They settled into varied habitats and split into roughly 100 species that include snakes with some of the most toxic venom known: taipans, brown snakes, death adders and tiger snakes.

Over time, the Australian snakes took on most of the body forms found in North American snakes.

Grundler and Rabosky compared those body forms by analyzing preserved specimens in the collections of the University of Michigan Museum of Zoology, the Field Museum of Natural History and the Western Australian Museum. They made measurements of head and body dimensions from 786 specimens representing 248 species.

"We found that the morphologies of Australia elapid snakes have evolved into the same types of body forms seen across a much more diverse set of snakes from North America," Grundler said. "For example, Australia has the death adder, a stout-bodied ambush predator that looks, for all practical purposes, like a typical viper.

"Vipers are a family of fanged, venomous snakes that includes pit vipers such as rattlesnakes, copperheads and bushmasters. But the death adder is not a viper and is in fact much more closely related to other Australian elapid snakes, most of which look nothing like vipers."

Grundler and Rabosky surveyed the published literature for data on the feeding habits of snakes on both continents. The feeding habits were placed in eight prey categories: invertebrates such as insects, earthworms, mollusks and crustaceans; fish; amphibians; lizards and snakes; lizard and snake eggs; birds; bird eggs; and mammals.

In many cases, Australian and North American snakes that are similar in appearance differ greatly in their diets, the U-M researchers found.

For example, most small snakes that live in sand or leaf litter in North America eat invertebrates such as spiders, scorpions, slugs and centipedes. But in Australia, those snakes tend to be specialists on lizards and other snakes.

The physical similarities between North American and Australian snakes are thought to reflect evolutionary advantages that those body forms provide for locomotion, foraging, or habitat use, according to the authors.

The research was funded by the National Science Foundation.

Daniel Rabosky: http://bit.ly/1xymDMK

Jim Erickson | newswise
Further information:
http://www.umich.edu

Further reports about: Australian Venomous Zoology continents eggs lizards species venom

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>