Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

28.10.2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential source of self-renewing stem cells. The research, published in STEM CELLS, develops the understanding of cell activation in central nervous system injuries; advancing research into new treatments for spinal injuries and degenerative brain disorders.

The team focused their research on spinal cord injuries, caused when the spinal cord is damaged by trauma rather than disease. Depending on the severity a spinal injury can lead from pain to full paralysis, with high social and medical care costs. As the spinal cord lacks the ability to regenerate, the potential for patient recovery is severely limited.

"Our research offers the first evidence that the spinal cord meninges, the system of membranes which cover the surface of the brain and the spinal cord, contains stem cells which are capable of self-renewal and proliferation," said lead authors Dr Ilaria Decimo and Dr Francesco Bifari, at the University of Verona.

Following a spinal injury meningeal cells increase in number and migrate to form glial scars and the team believe this process explains part of the mechanism of stem cell activation in central nervous system diseases; a mechanism which could in turn be used for treatments. Dr Decimo's team microdissected samples of spinal cord meninges from adult rats revealing that meningeal cells contain crucial stem cell properties. It is these properties which increase following a spinal cord injury.

"Our research emphasizes the role of meninges cells in the reaction to spinal cord trauma and indicates for the first time that spinal cord meninges harbour stem cells which are activated by injury," concluded Dr, Decimo. "Further testing could result in a strategic turnaround for advancing regenerative medicine for treating neurological disorders and spinal cord injuries."

"This study underlines the importance of endogenous stem cells," said STEM CELLS Editor Dr Miodrag Stojkovic. "Identification of these cells is crucial for understanding the basic mechanisms of cell biology and tissue repair, but also to identify drugs and chemicals which might be used to mobilize meningeal stem cells."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

Further reports about: spinal cord spinal cord injuries spinal injury stem cells

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>