Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence of how high glucose damages blood vessels could lead to new treatments

13.05.2009
New evidence of how the elevated glucose levels that occur in diabetes damage blood vessels may lead to novel strategies for blocking the destruction, Medical College of Georgia researchers say.

They found a decreased ability of blood vessels to relax resulted from increased activity of a natural mechanism for altering protein form and function, says Dr. Rita C.Tostes, physiologist in the MCG School of Medicine.

The researchers suspect increased modification of proteins by a glucose-derived molecule is a player in vascular problems associated with hypertension, stroke and obesity as well.

One aftermath of high glucose levels is low levels of the powerful vasodilator nitric oxide in blood vessels, a shortfall that increases the risk of high blood pressure and eventual narrowing of the vessels, researchers reported at the American Society of Hypertension 24th Annual Scientific Program in San Francisco during a joint session with the Council for High Blood Pressure.

"We know diabetes is a major risk factor for cardiovascular disease and we think this is one of the reasons," Dr. Tostes says.

Diabetes increases the risk of cardiovascular disease such as heart disease and stroke, even when glucose, or blood sugar, levels are under control. In fact, about 75 percent of people with diabetes die from some form of heart or blood vessel disease, according to the American Heart Association.

Most of the glucose in the body goes directly into cells where it's modified to produce the energy source ATP. However about 5 percent of all glucose is converted to another sugar moiety, O-GlcNAc, one of the sugar types that can modify proteins.

Inside the blood vessel walls of healthy mice, MCG researchers found increased activity by O-GlcNAc competes with another mechanism for modifying proteins called phosphorylation. In blood vessels, phorphorylation modifies the enzyme that produces nitric oxide, called nitric oxide synthase, so that it makes more of the blood vessel dilator. But add more O-GlcNAc to the mix and it seems to beat phosphorylation to the punch so there is the opposite result. The longer O-GlcNAc levels were high, the worse the resulting problem, says Victor Lima, a graduate student at the University of Sao Paulo working with Dr. Tostes.

An animal model of hypertension seemed to confirm the finding that the more O-GlcNAc, the more blood vessels contract because these animals had higher O-GlcNAc levels. "Now we are trying to see why this is happening and what comes first. Is increased blood pressure leading to changed O-GlcNAc or are augmented levels of O-GlcNAc contributing to the change we see in the vasculature of hypertensives?" Dr. Tostes says. "If we know how this changes vascular function, we can understand some of the dysfunction that we see in diabetes."

To make sure they were targeting the O-GlcNAc sugar and not dealing with other effects of glucose on blood vessels, the researchers blocked the enzyme OGA, an enzyme that normally removes O-GlcNAc from proteins so they can revert to their normal state.

If the findings continue to hold true, drugs similar to those they use in the lab to inhibit OGA or OGT, the enzyme that adds O-GlcNAc to the protein, could one day help reduce the significant cardiovascular risk associated with diabetes, Mr. Lima says. "I think it looks very promising," Dr. Tostes adds.

Future studies will include blocking the pathway for adding O-GlcNAc in hypertensive animals to study the impact on blood pressure and vascular function.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>