Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence Early Reptiles Were First Vertebrates to Live on Dry River Plains

11.08.2010
Some 315 million years ago, a reptile about the size of house cat took a walk along a dried up river bed, leaving its small, splayed footprints behind.

A few small steps for an ancient tetrapod, one huge step for science. Turns out that was some walk -- providing evidence that early reptiles were the first vertebrates able to live on dry river plains far from the sea. Meanwhile, their amphibian cousins were still hanging out “poolside,” needing the wetter environment to breed, lay their eggs and reproduce.

It has long been suspected by scientists that reptiles were the first to make the continental interiors their home. The new discovery of trackways proves this theory.

“This is a major evolutionary development -- allowing our ancestors to live on land without having to beetle back to the water to reproduce,” explains Martin Gibling, professor of Earth sciences at Dalhousie University in Halifax, Nova Scotia, and a co-author of a paper just published in journal Palaeogeography, Palaeoclimatology, Palaeoecology.

... more about:
»Dalhousie »Dry »River »evidence »reptiles »vertebrates

By “our ancestors” Dr. Gibling clarifies: “Meaning vertebrates, from fish through amphibians to reptiles to birds, then through to us, mammals ... It’s a major step that allows larger animals to populate the land.”

The reptile trackways preserved in rock were literally stumbled upon by the paper’s lead author, Howard Falcon-Lang of Royal Holloway, University of London, who grazed his knee as he scrambled over the fossilized slab. The rock -- “about the size of a filing cabinet,” says Dr. Gibling -- had fallen out of a sea-cliff along the Bay of Fundy, near the town of St. Martins on New Brunswick’s southern coast.

The tracks are abundant and indicate a few different kinds of reptiles were there, including one with slender digits and a narrow splay and another with a much stubbier foot. Also recorded in the rock are the mud cracks of a dry riverbed, the pitter-patter of raindrops and various plants.

It was Arden Bashforth’s job to examine that plant. He determined there were big, seed-bearing trees nearby that would have lived in a dry landscape.

The paper’s publication caps off his time at Dalhousie nicely; he just defended his PhD thesis on paleoecology (the study of fossil organisms and their relationship to ancient environments) and is returning to Denmark where he just landed a job at a geological museum in Copenhagen.

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

Further reports about: Dalhousie Dry River evidence reptiles vertebrates

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>