Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence debunks 'stupid' Neanderthal myth

27.08.2008
Research by UK and American scientists has struck another blow to the theory that Neanderthals (Homo neanderthalensis) became extinct because they were less intelligent than our ancestors (Homo sapiens).

The research team has shown that early stone tool technologies developed by our species, Homo sapiens, were no more efficient than those used by Neanderthals. Published today (26 August) in the Journal of Human Evolution, their discovery debunks a textbook belief held by archaeologists for more than 60 years.

The team from the University of Exeter, Southern Methodist University, Texas State University, and the Think Computer Corporation, spent three years flintknapping (producing stone tools). They recreated stone tools known as 'flakes,' which were wider tools originally used by both Neanderthals and Homo sapiens, and 'blades,' a narrower stone tool later adopted by Homo sapiens. Archaeologists often use the development of stone blades and their assumed efficiency as proof of Homo sapiens' superior intellect.

To test this, the team analysed the data to compare the number of tools produced, how much cutting-edge was created, the efficiency in consuming raw material and how long tools lasted.

Blades were first produced by Homo sapiens during their colonization of Europe from Africa approximately 40,000 years ago. This has traditionally been thought to be a dramatic technological advance, helping Homo sapiens out-compete, and eventually eradicate, their Stone Age cousins. Yet when the research team analysed their data there was no statistical difference between the efficiency of the two technologies. In fact, their findings showed that in some respects the flakes favoured by Neanderthals were more efficient than the blades adopted by Homo sapiens.

The Neanderthals, believed to be a different species from Homo sapiens, evolved in Ice Age Europe, while the latter evolved in Africa before spreading out to the rest of the world around 50-40,000 years ago. Neanderthals are thought to have died out around 28,000 years ago, suggesting at least 10,000 years of overlap and possible interaction between the two species in Europe.

Many long-held beliefs suggesting why the Neanderthals went extinct have been debunked in recent years. Research has already shown that Neanderthals were as good at hunting as Homo sapiens and had no clear disadvantage in their ability to communicate. Now, these latest findings add to the growing evidence that Neanderthals were no less intelligent than our ancestors.

Metin Eren, an MA Experimental Archaeology student at the University of Exeter and lead author on the paper comments: "Our research disputes a major pillar holding up the long-held assumption that Homo sapiens were more advanced than Neanderthals. It is time for archaeologists to start searching for other reasons why Neanderthals became extinct while our ancestors survived. Technologically speaking, there is no clear advantage of one tool over the other. When we think of Neanderthals, we need to stop thinking in terms of 'stupid' or 'less advanced' and more in terms of 'different.'"

Now that it is established that there is no technical advantage to blades, why did Homo sapiens adopt this technology during their colonization of Europe? The researchers suggest that the reason for this shift may be more cultural or symbolic. Eren explains: "Colonizing a continent isn't easy. Colonizing a continent during the Ice Age is even harder. So, for early Homo sapiens colonizing Ice Age Europe, a new shared and flashy-looking technology might serve as one form of social glue by which larger social networks were bonded. Thus, during hard times and resource droughts these larger social networks might act like a type of 'life insurance,' ensuring exchange and trade among members on the same 'team.'"

The University of Exeter is the only university in the world to offer a degree course in Experimental Archaeology. This strand of archaeology focuses on understanding how people lived in the past by recreating their activities and replicating their technologies. Eren says: "It was only by spending three years in the lab learning how to physically make these tools that we were able to finally replicate them accurately enough to come up with our findings."

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>