Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Ever and Ever: When the Wedding Flight Never Ends

07.01.2011
Entomologists of University Jena are the first to reconstruct a fossil insect completely in 3D

Its stay on this planet was actually meant to be a very short one. Male twisted-wing parasites (Strepsiptera) usually have a life span of only few hours. However, accidentally a specimen of Mengea tertiara, about the size of an aphid, became preserved for ‘eternity’: during its wedding flight about 42 million years ago it was caught in a drop of tree resin and subsequently almost perfectly conserved in a piece of amber.

PD Dr. Hans Pohl of Friedrich Schiller University Jena (Germany) calls this “a very exceptional stroke of luck.” Together with colleagues from Jena, Hamburg and New York, the insect researcher at the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum has now ‘resurrected’ the fossil insect: using high resolution micro-computer tomography (micro-CT) the anatomy of an extinct insect was completely reconstructed three-dimensionally for the first time.

The researchers did not only get a detailed and realistic impression of the external form of the extinct insect. “The micro-CT also allows us to look into the interior”, Dr. Pohl stresses. Whereas the inner organs were destroyed during the process of petrification under high pressure, internal soft tissues are occasionally largely preserved in amber fossils.

About 80 percent of the inner tissues of the fossilized twisted-wing parasite were exceptionally well preserved, as revealed by the recent evaluation of the micro-CT data. Musculature, nervous system, sense organs, digestive and reproductive systems were displayed to the Jena scientists like an open book. With 3D-glasses the insect can be viewed in three dimensions. Only a few mouse clicks are needed to turn it around or to produce virtual sections.

“This leads to important insights in the phylogeny and evolution of these insects”, Professor Dr. Rolf Beutel of the University Jena explains. Until today the placement of Strepsiptera in the phylogenetic tree of insects remained an enigma. “The females of these strange animals are almost always endoparasitic, i. e. live inside their hosts”, Beutel continues. However, according to Beutel, the females of the analyzed species must have been free living. This conclusion is based on the simple shape of the external genitalia of the Mengea male. The males of species with females parasitizing in winged insects always have an anchor-shaped penis. “This firmly connects the males with the females, which are embedded in fast moving hosts such as for instance plant hoppers or bees.“ This specific docking mechanism is clearly missing in Mengea.

Moreover, the Jena research team could confirm the position of the extinct Mengea within the evolutionary tree. “These are ancestral predecessors of strepsipteran species existing today”, says Dr. Pohl. Finding females and copulating was the only mission of the males during their extremely short life span. ”This is clearly reflected by their anatomy”, says the insect researcher. Highly efficient antennal sense organs and ‘raspberry eyes’ help to track the female. The flight apparatus and the genitalia were particularly well developed. In contrast to this, the mouth parts and the digestive tract are distinctly reduced compared to other insects. “The males were not able to ingest food, at least not in solid form”, Professor Beutel concludes. It is possible that the intestine was filled with air, which improves the flying capacity of these tiny insects.

The Jena researchers will scan more amber insects in the near future. “This method has an enormous potential”, Dr. Pohl says confidently. It not only allows a very detailed study of external and internal structures but is also non- destructive, in contrast to other techniques. Both aspects combined will guarantee an immense progress in the investigation of fossil and extant insects. Like Mengea other fossils will be preserved for critical investigations and re-evaluations of future scientists.

Contact Details:
PD Dr. Hans Pohl
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstr. 1
D-07743 Jena
Phone: +49 3641 949156
Email: hans.pohl[at]uni-jena.de

Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>