Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even thermally tolerant corals are in hot water when it comes to bleaching

02.12.2015

Scientists have discovered that corals adapted to naturally high temperatures, such as those off the north west coast of Australia, are nonetheless highly susceptible to heat stress and bleaching.

Coral bleaching happens when sea temperatures rise, causing the breakdown of the symbiosis between coral and their zooxanthellae (the microscopic plants which gives coral most of its colour), which can be fatal for the coral.


Intertidal acropora corals exposed to air at low tide.

Credit: Verena Schoepf

Study lead author, Dr Verena Schoepf from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at the University of Western Australia's Oceans Institute says the researchers were surprised to find that corals around the Kimberley region in north Western Australia are just as sensitive to heat stress and bleaching as their counterparts from less extreme environments elsewhere.

"We found that exceeding their maximum monthly summer temperatures by 1 degree Centigrade for only a few days is enough to induce coral bleaching," Dr Schoepf says.

"We were surprised because under normal conditions, Kimberley corals can tolerate short-term temperature extremes and regular exposure to air without obvious signs of stress."

With up to 10m tides, the Kimberley region has the largest tropical tides in the world, creating naturally extreme and highly dynamic coastal habitats that corals from more typical reefs could not survive.

"Unfortunately the fact that Kimberley corals are not immune to bleaching suggests that corals living in naturally extreme temperature environments are just as threatened by climate change as corals elsewhere," says Dr Schoepf.

"We found that both branching and massive corals exposed at low tide coped better with heat stress than s corals from deeper water," says co-author Professor Malcolm McCulloch from the Coral CoE.

"However this doesn't mean that they are immune to bleaching," Professor McCulloch says.

The research, which was carried out in partnership with the Western Australian Marine Science Institution, also found that massive corals had a better chance of surviving and recovering from bleaching than branching corals.

The current strong El Nino weather pattern in the Pacific puts many coral reefs at risk of severe bleaching, and recent weather predictions show that the Kimberley region might be particularly affected in 2016.

"With the third global bleaching event underway, it has never been more urgent to understand the limits of coral thermal tolerance in corals," says Professor McCulloch.

Co-authors on the study also included Dr Michael Stat from the Trace and Environmental DNA (TrEnD) Laboratory at Curtin University and Dr James Falter from the Coral CoE at the University of Western Australia.

###

Paper:

Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment, by Verena Schoepf, Michael Stat, James L. Falter and Malcolm T. McCulloch is published in the journal Nature Scientific Reports

Images:

Link to Dropbox -- Please use image credits supplied in dropbox https://www.dropbox.com/sh/r2o49v8hqkawcih/AAAkLGyV99dml2D45iqVQyHDa?dl=0

Contacts:

Dr Verena Schoepf
61-(0)-8-6488-3644,
mobile: 61-(0)-416-540-415,
verena.schoepf@uwa.edu.au

Professor Malcolm McCulloch
61-(0)-457-939-937
malcolm.mcculloch@uwa.edu.au

Eleanor Gregory, Communications Manager
61-(0)-428-785-895
eleanor.gregory@jcu.edu.au

http://www.coralcoe.org.au/ 

Eleanor Gregory | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>