Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European scientists identify a gene network that predisposes to type 1 diabetes

09.09.2010
Type 1 diabetes is a metabolic disorder characterized by high blood sugar levels because the insulin-producing pancreatic beta cells are attacked and destroyed by the body's immune system. The exact cause is unknown, but viral or environmental trigger as well as a genetic susceptibility are thought to be major determinants of development of the disease. Type 1 diabetes is fatal unless treated with insulin.

Within a large international collaborative study, lead by Norbert Hübner (Max-Delbrück-Centrum für Molekulare Medizin (MDC) in Berlin-Buch, Germany) and Stuart Cook (Imperial College London, UK), European scientists have now identified a gene network modulating type 1 diabetes risk. Furthermore, the scientists identified a key receptor within this important genetic framework.

The current multidimenstional approach was based on genetic as well as gene expression data in different species and provided new insights in respect that the innate viral response pathway and immune cells called macrophages are also implicated in T1D.

Transcription factors play a major role in regulating gene expression by binding to specific target sequences close to the gene of interest. Importantly, a transcription factor often regulates not only one gene but whole gene networks. “In recent years a multiplicity of risk genes has been discovered which play an important role in the development of various diseases. Despite this, though, the molecular mechanism that influences the onset of the diseases has not yet been fully understood” explains a leader of this currently published study, Prof. Dr. Norbert Huebner. “We have identified a transcription factor which controls a gene network in which a well known Diabetes mellitus Type 1 risk gene occurs.

“Further analysis of the data”, concluded Prof. Huebner, “revealed that the IDIN (interferon regulatory factor 7 (IRF71)-driven inflammatory network ) gene essentially influences Diabetes mellitus type 1 risk via the receptor EBI2 which regulates IDIN and thus plays a role in the development of this autoimmune disease. Additionally we were able to show the involvement of macrophages in the pathogenesis as well as able to show that similar signaling pathways are involved in Diabetes mellitus type 1 and Epstein Barr virus infection.”

More broadly, the study is of interest because it successfully combines gene networks and DNA sequence variation to emphasize the fact that regulatory regions that perturb biological networks can have an important role in disease risk.

“The present study is an extraordinary example of combining different genetic approaches, involving genome wide expression data from rats and humans as well as genome wide association data resulting in new and exciting insights into disease pathogenesis” explained Prof. Dr. Heribert Schunkert, coordinator of Cardiogenics. “In addition, it is a success story based on international collaboration between working groups and consortia with very different expertise” adds Prof. Dr. Jeanette Erdmann, scientific project manager of Cardiogenics.

The Cardiogenics consortium (www.cardiogenics.eu) has played its role in this work bringing experimental monocyte and macrophage expression data and expertise from its own focus on the assessment of heart attack risk to aid understanding of another important common disease. This EU project has gathered together leading research groups from six countries (Germany, United Kingdom, France, The Netherlands, Sweden, and Italy) to build a multi-disciplinary team to meet the challenge of improving cardiovascular healthcare. In addition to clinical teams, the consortium consists of academic groups specialized in human genetics, genetic epidemiology, bioinformatics, transcriptomics, and proteomics. In addition, the consortium has been supported by the Welcome Trust Sanger Institute, Europe's premier genome centre.

A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

M. Heinig*, E. Petretto*, C. Wallace, L. Bottolo, M. Rotival, H. Lu, Y. Li, R. Sarwar, S.R. Langley, A. Bauerfeind, O. Hummel, Y.-A. Lee, S. Paskas, C. Rintisch, K. Saar, .J Cooper, R. Buchan, E.E. Gray, J.G. Cyster, Cardiogenics Consortium, J. Erdmann, C. Hengstenberg, S. Maouche, W.H. Ouwehand, C.M. Rice, N.J. Samani, H. Schunkert, A.H. Goodall, H. Schulz, H. Roider, M. Vingron, S. Blankenberg, T. Münzel, T. Zeller, S. Szymczak, A. Ziegler, L. Tiret, D.J. Smyth, M. Pravenec, T.J. Aitman, F. Cambien, D. Clayton, J.A. Todd, N. Hubner* und S.A. Cook* (*contributed equally)

Nature advance online publication 08.09.2010: http://www.nature.com/

Contact
Prof. Dr. Jeanette Erdmann and Prof. Dr. Heribert Schunkert
Cardiogenics - coordinating office
University of Lübeck
Ratzeburger Allee 160
23538 Lübeck, Germany
phone: 0049-451-5002501
fax: 0049-451-5006437
e-mail: info@cardiogenics.eu

Rüdiger Labahn | idw
Further information:
http://www.cardiogenics.eu
http://www.nature.com/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>