Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


European scientists identify a gene network that predisposes to type 1 diabetes

Type 1 diabetes is a metabolic disorder characterized by high blood sugar levels because the insulin-producing pancreatic beta cells are attacked and destroyed by the body's immune system. The exact cause is unknown, but viral or environmental trigger as well as a genetic susceptibility are thought to be major determinants of development of the disease. Type 1 diabetes is fatal unless treated with insulin.

Within a large international collaborative study, lead by Norbert Hübner (Max-Delbrück-Centrum für Molekulare Medizin (MDC) in Berlin-Buch, Germany) and Stuart Cook (Imperial College London, UK), European scientists have now identified a gene network modulating type 1 diabetes risk. Furthermore, the scientists identified a key receptor within this important genetic framework.

The current multidimenstional approach was based on genetic as well as gene expression data in different species and provided new insights in respect that the innate viral response pathway and immune cells called macrophages are also implicated in T1D.

Transcription factors play a major role in regulating gene expression by binding to specific target sequences close to the gene of interest. Importantly, a transcription factor often regulates not only one gene but whole gene networks. “In recent years a multiplicity of risk genes has been discovered which play an important role in the development of various diseases. Despite this, though, the molecular mechanism that influences the onset of the diseases has not yet been fully understood” explains a leader of this currently published study, Prof. Dr. Norbert Huebner. “We have identified a transcription factor which controls a gene network in which a well known Diabetes mellitus Type 1 risk gene occurs.

“Further analysis of the data”, concluded Prof. Huebner, “revealed that the IDIN (interferon regulatory factor 7 (IRF71)-driven inflammatory network ) gene essentially influences Diabetes mellitus type 1 risk via the receptor EBI2 which regulates IDIN and thus plays a role in the development of this autoimmune disease. Additionally we were able to show the involvement of macrophages in the pathogenesis as well as able to show that similar signaling pathways are involved in Diabetes mellitus type 1 and Epstein Barr virus infection.”

More broadly, the study is of interest because it successfully combines gene networks and DNA sequence variation to emphasize the fact that regulatory regions that perturb biological networks can have an important role in disease risk.

“The present study is an extraordinary example of combining different genetic approaches, involving genome wide expression data from rats and humans as well as genome wide association data resulting in new and exciting insights into disease pathogenesis” explained Prof. Dr. Heribert Schunkert, coordinator of Cardiogenics. “In addition, it is a success story based on international collaboration between working groups and consortia with very different expertise” adds Prof. Dr. Jeanette Erdmann, scientific project manager of Cardiogenics.

The Cardiogenics consortium ( has played its role in this work bringing experimental monocyte and macrophage expression data and expertise from its own focus on the assessment of heart attack risk to aid understanding of another important common disease. This EU project has gathered together leading research groups from six countries (Germany, United Kingdom, France, The Netherlands, Sweden, and Italy) to build a multi-disciplinary team to meet the challenge of improving cardiovascular healthcare. In addition to clinical teams, the consortium consists of academic groups specialized in human genetics, genetic epidemiology, bioinformatics, transcriptomics, and proteomics. In addition, the consortium has been supported by the Welcome Trust Sanger Institute, Europe's premier genome centre.

A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

M. Heinig*, E. Petretto*, C. Wallace, L. Bottolo, M. Rotival, H. Lu, Y. Li, R. Sarwar, S.R. Langley, A. Bauerfeind, O. Hummel, Y.-A. Lee, S. Paskas, C. Rintisch, K. Saar, .J Cooper, R. Buchan, E.E. Gray, J.G. Cyster, Cardiogenics Consortium, J. Erdmann, C. Hengstenberg, S. Maouche, W.H. Ouwehand, C.M. Rice, N.J. Samani, H. Schunkert, A.H. Goodall, H. Schulz, H. Roider, M. Vingron, S. Blankenberg, T. Münzel, T. Zeller, S. Szymczak, A. Ziegler, L. Tiret, D.J. Smyth, M. Pravenec, T.J. Aitman, F. Cambien, D. Clayton, J.A. Todd, N. Hubner* und S.A. Cook* (*contributed equally)

Nature advance online publication 08.09.2010:

Prof. Dr. Jeanette Erdmann and Prof. Dr. Heribert Schunkert
Cardiogenics - coordinating office
University of Lübeck
Ratzeburger Allee 160
23538 Lübeck, Germany
phone: 0049-451-5002501
fax: 0049-451-5006437

Rüdiger Labahn | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>