European Commission to fund new research project / WWU takes leading role

The aim of the project is to develop new types of enzymes in order to make the best possible use of certain complex sugar molecules in the food industry and for technical and medical applications.

The project is being led by the team of Prof. Bruno Moerschbacher from the Institute of Biochemistry and Biotechnology of Plants at WWU; also involved are other universities and research institutes, multinational companies and small biotechnology firms from Germany, France, Denmark, Holland, Sweden and Bulgaria. For their part of the project the Münster team will be receiving around € 800,000.

Polysaccharides (“multi-sugars”) are by far the most frequent biomolecules. They include everyday substances such as starch from potatoes or cellulose from cotton. In addition to such simple-structure polysaccharides, which contain multiple lines of a certain sugar molecule in a long chain, there are also very complex polysaccharides which are composed of many different sugars, e.g. pectin, which makes jam gel. Such complex sugars, also known as hydrocolloids, are important additives used especially in the food industry. They are extracted primarily from plants and algae.

In many cases, the hydrocolloids with the best properties are only formed from very particular organisms and are therefore only available in limited quantities. So the aim of the project is to help open up new sources for known hydrocolloids. For example, the researchers want to isolate certain enzymes – those biological tools which a few rare species of red algae use to produce the high-quality carrageenan hydrocolloid. Using modern molecular genetic methods, the researchers then want to optimise these enzymes to the extent that they can be used in a biotechnological process to convert the lower-quality carrageenan of other, more widespread species of red algae unto the high-quality product from the rarer algae.

Hydrocolloids also play an important role in the human body. “Sugars are masters of variety”, says Prof. Moerschbacher. “They can form innumerable structures, and the different structures all contain information.” For example, the immune system can often recognise viruses by their typical sugars. “The language of sugars is far more complex than that of genes or proteins, and so far we've hardly been able to 'read' it, let alone understand it,” he says. “If we want to make use of this language, we will also have to learn to write it.”

Currently only a few “words” of this sugar language are known, including one sugar compound which prevents human blood from coagulating. One of its uses is for patients with thrombosis, but at present it can only be produced in a very elaborate and expensive process. In their new project the scientists want to find the “reading and writing tools” of the body's cells – in other words, to find those enzymes which produce the coagulation inhibitor and carry out its “stage directions”. Using molecualr genetic methods, the researchers want not only to produce these enzymes in large quantities and in a highly purified form, but also to study their properties and optimise them so that they have the conditions for cell-free synthesis or for a modification of complex sugar structures.

Work on the PolyModE (“Polysaccharide Modifying Enzymes”) project might also be able to produce new types of complex sugars with even better improved properties. “When, for example, we understand how human cells produce certain blood coagulation inhibitors,” says Prof. Moerschbacher, “or why they react to certain substances by stimulating the immune system, then we will be able to produce 'designer sugars' with the help of optimised enzymes, and these sugars can then specifically prevent blood from coagulating or, for example, help wounds to heal up. I am convinced that such complex polysaccharides, produced entirely biologically and which have a specific effect, have enormous potential in many areas. They are no problem for the human body and are easily degradable in the environment.”

Media Contact

Dr. Christina Heimken idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors