Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Commission to fund new research project / WWU takes leading role

03.07.2009
In the next four years the European Commission will be providing funding to the tune of €6 million for the new "PolyModE" research project, which is being coordinated at the University of Münster.

The aim of the project is to develop new types of enzymes in order to make the best possible use of certain complex sugar molecules in the food industry and for technical and medical applications.

The project is being led by the team of Prof. Bruno Moerschbacher from the Institute of Biochemistry and Biotechnology of Plants at WWU; also involved are other universities and research institutes, multinational companies and small biotechnology firms from Germany, France, Denmark, Holland, Sweden and Bulgaria. For their part of the project the Münster team will be receiving around € 800,000.

Polysaccharides ("multi-sugars") are by far the most frequent biomolecules. They include everyday substances such as starch from potatoes or cellulose from cotton. In addition to such simple-structure polysaccharides, which contain multiple lines of a certain sugar molecule in a long chain, there are also very complex polysaccharides which are composed of many different sugars, e.g. pectin, which makes jam gel. Such complex sugars, also known as hydrocolloids, are important additives used especially in the food industry. They are extracted primarily from plants and algae.

In many cases, the hydrocolloids with the best properties are only formed from very particular organisms and are therefore only available in limited quantities. So the aim of the project is to help open up new sources for known hydrocolloids. For example, the researchers want to isolate certain enzymes - those biological tools which a few rare species of red algae use to produce the high-quality carrageenan hydrocolloid. Using modern molecular genetic methods, the researchers then want to optimise these enzymes to the extent that they can be used in a biotechnological process to convert the lower-quality carrageenan of other, more widespread species of red algae unto the high-quality product from the rarer algae.

Hydrocolloids also play an important role in the human body. "Sugars are masters of variety", says Prof. Moerschbacher. "They can form innumerable structures, and the different structures all contain information." For example, the immune system can often recognise viruses by their typical sugars. "The language of sugars is far more complex than that of genes or proteins, and so far we've hardly been able to 'read' it, let alone understand it," he says. "If we want to make use of this language, we will also have to learn to write it."

Currently only a few "words" of this sugar language are known, including one sugar compound which prevents human blood from coagulating. One of its uses is for patients with thrombosis, but at present it can only be produced in a very elaborate and expensive process. In their new project the scientists want to find the "reading and writing tools" of the body's cells - in other words, to find those enzymes which produce the coagulation inhibitor and carry out its "stage directions". Using molecualr genetic methods, the researchers want not only to produce these enzymes in large quantities and in a highly purified form, but also to study their properties and optimise them so that they have the conditions for cell-free synthesis or for a modification of complex sugar structures.

Work on the PolyModE ("Polysaccharide Modifying Enzymes") project might also be able to produce new types of complex sugars with even better improved properties. "When, for example, we understand how human cells produce certain blood coagulation inhibitors," says Prof. Moerschbacher, "or why they react to certain substances by stimulating the immune system, then we will be able to produce 'designer sugars' with the help of optimised enzymes, and these sugars can then specifically prevent blood from coagulating or, for example, help wounds to heal up. I am convinced that such complex polysaccharides, produced entirely biologically and which have a specific effect, have enormous potential in many areas. They are no problem for the human body and are easily degradable in the environment."

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Biologie.IBBP/moerschbacher/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>