Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eurofins' scientists discover genetic differences between 'identical' twins

11.12.2013
Ebersberg, Germany, December 10, 2013 - Eurofins Scientific (EUFI.PA), a European leader in Genomics Services, Forensics and Paternity Testing, announces a milestone in genetic and forensic research.

A multidisciplinary Eurofins team in the Eurofins flagship Genomics laboratory in Ebersberg, Germany, has successfully completed a research project to genetically discriminate "identical" monozygotic twins.

So far there have been only theoretical considerations against the experimental finding and dogma that monozygotic twins are genetically fully identical. Statistically, around 6 of 1,000 males are identical twins. Up to now, forensic DNA fingerprinting testing could not be used in crime or paternity cases involving identical twins, as there was no possibility of genetically discriminating between them. Such cases are regularly discussed in the World's press, including murder, child custody and heritage cases.

Forensic laboratories around the world had accepted these analytical restrictions, but Eurofins scientists wanted to push these limits of DNA testing. They used the unique combination of leading forensics and genomics labs available at Eurofins to reach this milestone.

Technically, the Eurofins scientists applied Eurofins' ultra-deep next generation sequencing and associated bioinformatics techniques. They sequenced DNA from sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis revealed five mutations, so called Single Nucleotide Polymorphisms (SNPs) present in the twin father and the child, but not in the twin uncle. The SNPs were confirmed by classical Sanger sequencing. The results give experimental evidence for the hypothesis that rare mutations will occur early after or before the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germ line.

The genetic differences found and the method used provide a solution to solve forensic and paternity cases involving monozygotic twins as originator of DNA traces in crime, or as alleged fathers. Eurofins is the first to offer such a test.

The peer-reviewed study "Finding the needle in the haystack: Differentiating "identical" twins in paternity testing and forensics by ultra-deep next generation sequencing" is published in the renowned journal Forensic Science International: Genetics, Available online 8 November 2013, ISSN 1872-4973, http://dx.doi.org/10.1016/j.fsigen.2013.10.015.

Bruno Poddevin, Senior Vice-President of the Genomic Services division and head of the Forensics laboratory at Eurofins, comments: "Eurofins scientists are the first to proof that monozygotic twins are genetically not absolutely identical. As the only provider worldwide Eurofins can now offer DNA forensic and paternity testing to discriminate identical twins to authorities, courts and individuals. Our leading genomic and forensic services team has provided the basis for reaching this milestone. As the first provider of next generation sequencing services in Europe, Eurofins also has proprietary, long expertise in the professional handling and analysis of the enormous amount of data involved in such a project. The dataset in this project equaled a total of 241 human genomes, resulting from up to 94 fold genomic coverage of the involved three individuals.

The Eurofins "Twin Test" is available at all laboratories of the Eurofins Genomics and Eurofins Genetics Division. The test will be performed at the Eurofins DNA Campus in Ebersberg, at the laboratories of Eurofins MWG Operon and Eurofins Forensics.

Dr. Georg Gradl | EurekAlert!
Further information:
http://www.eurofins.com

Further reports about: DNA Eurofins Genetics SNP forensic genomic human genome identical twins monozygotic twins

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>