Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eurofins' scientists discover genetic differences between 'identical' twins

11.12.2013
Ebersberg, Germany, December 10, 2013 - Eurofins Scientific (EUFI.PA), a European leader in Genomics Services, Forensics and Paternity Testing, announces a milestone in genetic and forensic research.

A multidisciplinary Eurofins team in the Eurofins flagship Genomics laboratory in Ebersberg, Germany, has successfully completed a research project to genetically discriminate "identical" monozygotic twins.

So far there have been only theoretical considerations against the experimental finding and dogma that monozygotic twins are genetically fully identical. Statistically, around 6 of 1,000 males are identical twins. Up to now, forensic DNA fingerprinting testing could not be used in crime or paternity cases involving identical twins, as there was no possibility of genetically discriminating between them. Such cases are regularly discussed in the World's press, including murder, child custody and heritage cases.

Forensic laboratories around the world had accepted these analytical restrictions, but Eurofins scientists wanted to push these limits of DNA testing. They used the unique combination of leading forensics and genomics labs available at Eurofins to reach this milestone.

Technically, the Eurofins scientists applied Eurofins' ultra-deep next generation sequencing and associated bioinformatics techniques. They sequenced DNA from sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis revealed five mutations, so called Single Nucleotide Polymorphisms (SNPs) present in the twin father and the child, but not in the twin uncle. The SNPs were confirmed by classical Sanger sequencing. The results give experimental evidence for the hypothesis that rare mutations will occur early after or before the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germ line.

The genetic differences found and the method used provide a solution to solve forensic and paternity cases involving monozygotic twins as originator of DNA traces in crime, or as alleged fathers. Eurofins is the first to offer such a test.

The peer-reviewed study "Finding the needle in the haystack: Differentiating "identical" twins in paternity testing and forensics by ultra-deep next generation sequencing" is published in the renowned journal Forensic Science International: Genetics, Available online 8 November 2013, ISSN 1872-4973, http://dx.doi.org/10.1016/j.fsigen.2013.10.015.

Bruno Poddevin, Senior Vice-President of the Genomic Services division and head of the Forensics laboratory at Eurofins, comments: "Eurofins scientists are the first to proof that monozygotic twins are genetically not absolutely identical. As the only provider worldwide Eurofins can now offer DNA forensic and paternity testing to discriminate identical twins to authorities, courts and individuals. Our leading genomic and forensic services team has provided the basis for reaching this milestone. As the first provider of next generation sequencing services in Europe, Eurofins also has proprietary, long expertise in the professional handling and analysis of the enormous amount of data involved in such a project. The dataset in this project equaled a total of 241 human genomes, resulting from up to 94 fold genomic coverage of the involved three individuals.

The Eurofins "Twin Test" is available at all laboratories of the Eurofins Genomics and Eurofins Genetics Division. The test will be performed at the Eurofins DNA Campus in Ebersberg, at the laboratories of Eurofins MWG Operon and Eurofins Forensics.

Dr. Georg Gradl | EurekAlert!
Further information:
http://www.eurofins.com

Further reports about: DNA Eurofins Genetics SNP forensic genomic human genome identical twins monozygotic twins

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>