Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Establishing standard definitions for genome sequences

13.10.2009
In 1996, researchers from major genome sequencing centers around the world convened on the island of Bermuda and defined a finished genome as a gapless sequence with a nucleotide error rate of one or less in 10,000 bases. This effectively set the quality target for the human genome effort and was quickly applied to other genome projects. If a genome sequence didn't meet this stringent criterion, it was simply considered a "draft."

More than a decade later, researchers are finding that with the advent of the latest sequencing technologies the terms "draft" and "finished" are no longer sufficient to describe the varying levels of genome sequence quality being produced. The quality issue is of particular concern for any researcher who wants to use the sequence, in order to know its integrity and reliability.

This is of even greater concern for reference genome sequences, such as those genome projects conducted in support of the U.S. Department of Energy (DOE) missions of bioenergy and environmental clean-up, because they provide the foundational knowledge of the gene content and how these organisms interact with the environment.

As the proverbial "fire hose of data" becomes a Niagara torrent, with conservative estimates of 12,000 draft genomes hitting the public databases by 2012, researchers may be surprised to find that these datasets describe genomes that are not complete. Recognizing the problem, a group of researchers from several sequencing centers, including the DOE Joint Genome Institute (JGI), the Sanger Institute and the Human Microbiome Project (HMP) Jumpstart Consortium sequencing institutes, has proposed a new set of standards that expand upon the so-called "Bermuda standard." In the October 9 issue of the journal Science, they propose four additional categories between "draft" and "finished" status that reflect varying levels of completeness.

"In the past we've been limited to two options, requiring us and the other centers to come up with internal definitions," said DOE JGI metagenomics researcher Patrick Chain at Los Alamos National Laboratory (LANL), first author of the Science paper. "But these are not clear and they're not propagated to the databases to which we submit sequences. So when users try to download genomes they get data of unknown quality with no information, or a complete genome that they assume has been checked for missing-data errors."

Chain said that when he and the other organizers of the Sequencing, Finishing, Analysis in the Future meeting hosted by LANL first gathered in 2005, they were concerned by the varying quality of the new genomes being submitted to public archives . As the meeting organizers all represented major sequencing centers (and smaller groups as well), the genome projects standards group was initiated at LANL, stimulated by these concerns.

The six categories defined by the group include:

"Standard draft," which is the minimum amount of information needed for submission to a public database;
"High quality draft," which is typically generated by large sequencing centers such as DOE JGI, and which has little or no manual review;
"Improved high quality draft," which consists of data reviewed by either people or machines to some extent so most of the genetic data is assembled correctly, but some errors may still be present;
"Annotation-directed improvement," which is a sequenced segment that presents all the information in various gene regions as accurately as possible;
"Noncontiguous finished," which includes sequences that have been reviewed by both people and machines and would be considered complete except for "recalcitrant regions" that are proving problematic;
"Finished," which defines complete sequences that have minimal errors, if any.

DOE JGI's Chris Detter, one of the paper's senior authors, and head of the LANL Genome Science group, said that the definitions provided in the Science paper are fairly flexible because the group wanted the proposed standards to apply regardless of the genome project or sequencing technologies employed.

"My hope is all the major genome centers and advanced genomics groups use the gradations that fit their needs," he said. "Some centers may want all six, while some may only want three, but as long as they keep them intact we are in good shape. Then, my hope is that the smaller genomics groups adopt the classes as written to help the rest of the scientific community know what they are generating and submitting."

Chain added that the process of coming up with the proposed standards was not exactly an easy task since all major centers "have different pipelines, different sequencing techniques, different internal standards". They also recognized that the attempt to develop a "one size fits all" set of standards is still a work in progress. The definitions provided in the Science paper are fairly flexible, designed to apply regardless of the genome project or sequencing technologies employed and to meet each group's needs.

"We do expect that a number of people will comment on these standards, and possibly expand on the categories," he said, "but we feel we've covered all the bases with these six categories."

Chain said the group plans to team with the Genomic Standards Consortium, a grassroots movement begun by scientists who were concerned about the need for data collection standards in genome projects. The group has also talked to public archives such as GenBank to append these proposed standards to GenBank entries so that researchers can tell if the sequences will be useful to them. "Standards are a major issue to be tackled in genomics right now," Chain said. "These proposals are guideposts meant to inform users and generators."

Other DOE JGI authors on the study include David Bruce, Phil Hugenholtz, Nikos Kyrpides, Alla Lapidus, Sam Pitluck and Jeremy Schmutz. Other collaborating institutions are the Sanger Institute and the HMP Jumpstart Consortium sequencing centers (Washington University School of Medicine, the Broad Institute, the J. Craig Venter Institute, and Baylor College of Medicine), as well as Michigan State University, the Ontario Institute for Cancer Research, National Center for Biotechnology Information, Seattle Children's Hospital and Research Institute, Emory GRA and the Naval Medical Research Center.

The U.S. Department of Energy Joint Genome Institute, supported by DOE's Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>